Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrogen breakthrough could open the road to carbon-free cars

23.05.2007
A new breakthrough in hydrogen storage technology could remove a key barrier to widespread uptake of non-polluting cars that produce no carbon dioxide emissions.

UK scientists have developed a compound of the element lithium which may make it practical to store enough hydrogen on-board fuel-cell-powered cars to enable them to drive over 300 miles before refuelling. Achieving this driving range is considered essential if a mass market for fuel cell cars is to develop in future years, but has not been possible using current hydrogen storage technologies.

The breakthrough has been achieved by a team from the Universities of Birmingham and Oxford and the Rutherford Appleton Laboratory in Oxfordshire, under the auspices of the UK Sustainable Hydrogen Energy Consortium (UK-SHEC). UK-SHEC is funded by the SUPERGEN (Sustainable Power Generation and Supply) initiative managed and led by the Engineering and Physical Sciences Research Council (EPSRC).

Fuel cells produce carbon-free electricity by harnessing electrochemical reactions between hydrogen and oxygen. However, today’s prototype and demonstration fuel-cell-powered cars only have a range of around 200 miles. To achieve a 300 mile driving range, an on-board space the size of a double-decker bus would be needed to store hydrogen gas at standard temperature and pressure, while storing it as a compressed gas in cylinders or as a liquid in storage tanks would not be practical due to the weight and size implications.

The UK-SHEC research has therefore focused on a different approach which could enable hydrogen to be stored at a much higher density and within acceptable weight limits. The option involves a well-established process called ‘chemisorption’, in which atoms of a gas are absorbed into the crystal structure of a solid-state material and then released when needed.

The team has tested thousands of solid-state compounds in search of a light, cheap, readily available material which would enable the absorption/desorption process to take place rapidly and safely at typical fuel cell operating temperatures. They have now produced a variety of lithium hydride (specifically Li4BN3H10) that could offer the right blend of properties. Development work is now needed to further investigate the potential of this powder.

“This could be a major step towards the breakthrough that the fuel cell industry and the transport sector have waited for,” says UK-SHEC’s Project Co-ordinator Professor Peter Edwards of the University of Oxford. “It’s due to SUPERGEN’s vision of combining many of the leading groups in the UK to tackle this, arguably the biggest challenge for the development of hydrogen fuel cell vehicles. This work could make a key contribution to helping fuel cell cars become viable for mass-manufacture within around 10 years.”

Natasha Richardson | alfa
Further information:
http://www.epsrc.ac.uk

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent
25.09.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>