Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fiber-Based Light Source Promises Improvements in Food Inspection

19.03.2007
A new light source based on fiber-optic technology promises to improve the inspection of food, produce, paper, currency, recyclables and other products.

New research revealing this technology will be presented at the Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference (OFC/NFOEC), being held March 25-29 in Anaheim, Calif.

Currently, industrial processes for inspecting foodstuffs and other items often use "line-scan" cameras, which record images of objects one line at a time, just as fax machines scan documents on a line-by-line basis. Rapid electronic processors then detect whether there are any problems with the items and instruct mechanical actuators (such as air jets) to separate out unsatisfactory items. The problem is current line-scan cameras lack ideal light sources to image objects properly.

Now, Princeton Lightwave of Cranbury, N.J. and OFS Labs (a Somerset, N.J.-based division of Furukawa Electric) have introduced a fiber-optics-based solution, which they will describe in their OFC/NFOEC paper. In their design, a bright light source such as a laser sends light through an optical fiber. Along the length of the fiber is an ultraviolet-light-treated region called a "fiber grating." The grating deflects the light so that it exits perpendicularly to the length of the fiber as a long, expanding rectangle of light. This optical rectangle is then collimated by a cylindrical lens, such that the rectangle illuminates objects of interest at various distances from the source. The bright rectangle allows line scan cameras to sort products at higher speeds with improved accuracy.

The new fiber-based light source combines all the ideal features necessary for accurate and efficient scanning: uniform, intense illumination over a rectangular region; a directional beam that avoids wasting unused light by only illuminating the rectangle; and a "cool" source that does not heat up the objects to be imaged. Currently employed light sources such as tungsten halogen lamps or arrays of light-emitting diodes lack at least one of these features.

According to the researchers, this fiber-based device can be customized for a specific inspection application within four to six weeks, then manufactured for that application in 16 to 20 weeks.

Meeting Paper: G.E. Carver, K.S. Feder, P.S. Westbrook, "FBG Based Distributed Lighting for Sensing Applications," Presentation OThP1, Thursday, March 29, 3 p.m. PDT; meeting paper available upon request from Colleen Morrison, cmorri@osa.org.

ABOUT OFC/NFOEC
Since 1985, the Optical Fiber Communication Conference and Exposition (OFC) has provided an annual backdrop for the optical communications field to network and share research and innovations. In 2004, OFC joined forces with the National Fiber Optic Engineers Conference (NFOEC) creating the largest and most comprehensive international event for optical communications. By combining an exposition of more than 600 companies with a unique program of peer-reviewed technical programming and special focused educational sessions, OFC/NFOEC provides an unparalleled opportunity, reaching every audience from service providers to optical equipment manufacturers and beyond.

OFC/NFOEC, www.ofcnfoec.org, is managed by the Optical Society of America (OSA), a member society of the American Institute of Physics, and co-sponsored by OSA, the Institute of Electrical and Electronics Engineers/Communications Society (IEEE/ComSoc) and the Institute of Electrical and Electronics Engineers/Lasers and Electro-Optics Society (IEEE/LEOS). Acting as a non-financial technical co-sponsor is Telcordia Technologies, Inc.

Colleen Morrison | EurekAlert!
Further information:
http://www.osa.org

More articles from Power and Electrical Engineering:

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

nachricht Researchers control the properties of graphene transistors using pressure
17.05.2018 | Columbia University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>