Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wireless energy could power consumer, industrial electronics

15.11.2006
--Dead cell phone inspired researcher's innovation

Recharging your laptop computer, your cell phone and a variety of other gadgets may one day be as convenient as surfing the Web-wirelessly.

Marin Soljacic, an assistant professor in MIT's Department of Physics, will describe his and his MIT colleagues' research on that wireless future on Tuesday, Nov. 14 at the American Institute of Physics Industrial Physics Forum in San Francisco.

Like many of us, Soljacic (pronounced Soul-ya-CHEECH) often forgets to recharge his cell phone, and when it is about to die it emits an unpleasant noise. "Needless to say, this always happens in the middle of the night," he said. "So, one night, at 3 a.m., it occurred to me: Wouldn't it be great if this thing charged itself?" He began to wonder if any of the physics principles he knew of could turn into new ways of transmitting energy.

After all, scientists and engineers have known for nearly two centuries that transferring electric power does not require wires to be in physical contact. Electric motors and power transformers contain coils that transmit energy to each other by the phenomenon of electromagnetic induction. A current running in an emitting coil induces another current in a receiving coil; the two coils are in close proximity, but they do not touch.

Later, scientists discovered electromagnetic radiation in the form of radio waves, and they showed that another form of it-light-is how we get energy from the sun. But transferring energy from one point to another through ordinary electromagnetic radiation is typically very inefficient: The waves tend to spread in all directions, so most of the energy is lost to the environment.

Soljacic realized that the close-range induction taking place inside a transformer-or something similar to it-could potentially transfer energy over longer distances, say, from one end of a room to the other. Instead of irradiating the environment with electromagnetic waves, a power transmitter would fill the space around it with a "non-radiative" electromagnetic field. Energy would only be picked up by gadgets specially designed to "resonate" with the field. Most of the energy not picked up by a receiver would be reabsorbed by the emitter.

In his talk, Soljacic will explain the physics of non-radiative energy transfer and the possible design of wireless-power systems.

While rooted in well-known laws of physics, non-radiative energy transfer is a novel application no one seems to have pursued before. "It certainly was not clear or obvious to us in the beginning how well it could actually work, given the constraints of available materials, extraneous environmental objects, and so on. It was even less clear to us which designs would work best," Soljacic said. He and his colleagues tackled the problem through theoretical calculations and computer simulations.

With the resulting designs, non-radiative wireless power would have limited range, and the range would be shorter for smaller-size receivers. But the team calculates that an object the size of a laptop could be recharged within a few meters of the power source. Placing one source in each room could provide coverage throughout your home.

Soljacic is looking forward to a future when laptops and cell phones might never need any wires at all. Wireless, he said, could also power other household gadgets that are now becoming more common. "At home, I have one of those robotic vacuum cleaners that cleans your floors automatically," he said. "It does a fantastic job but, after it cleans one or two rooms, the battery dies." In addition to consumer electronics, wireless energy could find industrial applications powering, for example, freely roaming robots within a factory pavilion.

Soljacic's colleagues in the work are Aristeidis Karalis, a graduate student in the Department of Electrical Engineering and Computer Science, and John Joannopoulos, the Francis Wright Davis Professor of Physics. It is funded in part by the Materials Research Science and Engineering Center program of the National Science Foundation.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>