Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel audio telescope heeds call of the wild ... birds

13.11.2006
Researchers at the National Institute of Standards and Technology (NIST), Intelligent Automation, Inc. (Rockville, Md.) and the University of Missouri-Columbia have modified a NIST-designed microphone array to make an "audio telescope" that could help airports more efficiently avoid costly and hazardous bird-aircraft collisions by locating and identifying birds by their calls. The prototype system was described in a recent paper.*

From chirps to trills, bird song usually is soothing and restful--unless you're a pilot. Collisions with birds in flight, called "bird strikes," caused over $2 billion worth of damage to aircraft in the United States or U.S. aircraft abroad, since 1990, according to statistics from the Federal Aviation Administration. Worldwide, wildlife strikes --mostly birds--have destroyed more than 163 aircraft and killed more than 194 people since 1988.

Airports fight back with X-band radar and infrared cameras to monitor birds, but neither technology can distinguish between different kinds of birds, particularly in bad weather. That's important because not all birds are equally hazardous to aircraft, and shutting down runways because of the proximity of unknown birds imposes its own costs in delays and increased aircraft congestion. The "audio telescope" proposed by NIST and IAI researchers is a one-meter-diameter concentric array of 192 microphones that would be mounted parallel to the ground to listen to the skies. By comparing the arrival time of sounds at different microphones, the array can determine the direction from which the sound came, even distinguishing simultaneous sounds coming from different directions. The researchers adapted mathematical algorithms designed to allow speech recognition systems to identify different speakers in order to distinguish different species by their calls. The system can tell a Canada goose from a gull or a hawk within a couple of seconds.

The acoustic bird monitor is an extension of the NIST Mark-III Microphone array, a high-performance, directional, audio signal processing system developed as a test platform for speech-recognition computing systems in complex sound environments, such as meeting rooms. Development of the prototype was funded by the Air Force Office of Scientific Research.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>