Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Crystals For Extreme Electronics


Like silicon, silicon carbide is semiconductor and in some aspects, its characteristics are even better. Electrical strength of silicon carbide is ten times higher than that of silicon, heat conductivity is three times higher. Crystals of silicon carbide are almost perfect for power electronics. They can work at high current density (more than 10 kA per square centimeter) and voltage up to 4.5 kV, unachievable for silicon. Moreover, charge-drift velocity is twice higher in silicon carbide providing better commutation characteristics.

"If silicon carbide instead of silicon is used in power diodes, up to 20% of energy will be saved", said Professor Yury Tairov, head of Microelectronics Department in St-Petersburg Electrotechnical University.

The problem is how to make high-quality crystals of silicon carbide for a reasonable cost. Commonly a sublimation technique (so-called Lely Method) is used. In this technique a crystal grows from vaporized silicon carbide in a special chamber. Tairov and his group have enhanced the procedure. Now they can produce crystals of silicon carbide, which are 3-4 inch in size and with excellent characteristics.

Crystalline lattice of silicon carbide has about 160 modifications, which of those shows variations in semiconductor properties. Sometimes sandwich-like materials consisted of layers with different propertied are needed. Usually such "sandwiches" were made sticking a few plates together. The new technology enables growing monolithic crystal consisted of the required layers, but without splits between the layers.

According to the scientists, the cost of one plate of silicon carbide produced by the new technology may be ten times lower than the present costs.

Olga Maksimenko | alphagalileo

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>