Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Electronic life extension

A new electrode for lithium rechargeable batteries

Everyone knows the frustration of battery discharge: that sinking feeling when your notebook computer shuts down before you've saved that vital document or the artistic annoyance when your digital camera cannot snap that last holiday sunset. Worse still, what about those times when you're stuck on a five-hour flight with only a minute's worth of charge in your mp3 player?

A solid solution to the problem could come from chemists in the UK. They have devised a new and efficient way to improve battery power as well as make that precious charge last longer. They describe their results in the latest issue of Advanced Materials.

Modern rechargeable batteries for electronic gadgets generally use lithium compounds as the positive electrode and have revolutionized the electronics industry. They can be made very compact but can still deliver the required voltage to run everything from cell phones to digital cameras and notebook computers. And, not forgetting those ubiquitous mp3 players.

As gadgetry becomes sophisticated so consumer demands on battery life have risen. Moreover, more powerful lithium batteries are beginning to be used in power tools and may soon be seen in electric vehicles, applications that are much more draining than those for which conventional lithium batteries are used.

Now, Kuthanapillil Shaju and Peter Bruce of the University of St Andrews, Scotland, explain how lithium batteries use so-called intercalation materials as their anode. These materials are composed of a solid network of lithium atoms together with other metals, such as cobalt, nickel, or manganese, meshed together with oxygen atoms. When you charge a lithium battery, the charging current pulls the positive lithium ions out of this network. Then, when you use the battery, it discharges as these lithium ions migrate back into the electrode, pulling electrons as they go, and so generating a current.

The challenge is to make new electrode materials that deliver high power (fast discharge) and high energy storage. Shaju and Bruce hoped they could solve these problems by developing a new way of synthesizing a particular lithium intercalation compound (Li(Co1/3 Ni1/3 Mn1/3)O2). As a bonus, they hoped to be able to simplify the complicated manufacturing process.

The St Andrews team devised a new synthetic approach to the compound that involves simply mixing the necessary precursor compounds - organic salts of the individual metals - with a solvent in a single step. This is in sharp contrast to the conventional multi-step process used for making the compound. Using this technique, they were able to make highly uniform lithium oxide intercalation materials in which nickel, cobalt, and manganese ions are embedded at regular intervals in the solid, which also contains pores for the electrolyte.

The highly porous nature of the new material is crucial to its electrical properties. The pores allow the electrolyte to make intimate contact with the electrode surface resulting in high rates of discharge and high energy storage. The St Andrews team has tested their new lithium electrode material by incorporating it into a prototype battery and found that it gives the battery far superior power and charge retention. Increasing the rate by 1000%, so that the battery can be discharged in just six minutes, reduces the discharge capacity by only 12%. The test results suggest that this approach to rechargeable batteries could be used to make even higher power batteries for vehicles and power tools. Most importantly though, the new lithium materials could mean an end to mp3 player power loss on that long-haul flight. (Assuming you remembered to charge it up in the first place.)

There's an added bonus in that replacing a proportion of the cobalt used in the traditional lithium-cobalt-oxide electrodes with manganese improves safety by reducing the risk of overheating.

Author: Peter G. Bruce, University of St. Andrews (UK),

Title: Macroporous Li(Ni1/3Co1/3Mn1/3)O2: A High-Power and High-Energy Cathode for Rechargeable Lithium Batteries

Advanced Materials 2006, 18, No. 17, 2330–2334, doi: 10.1002/adma.200600958

| Advanced Materials
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>