Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon researcher leads team working to create methanol fuel cell

20.02.2006


Tiny fuel cells may provide power to many consumer goods



Carnegie Mellon University’s Prashant Kumta will discuss his novel methanol-powered fuel cell research from 8 to 9:30 a.m., Feb. 18, during the annual meeting of the American Association for the Advancement of Science at the Renaissance Grand Hotel in St. Louis, Mo.

Kumta, a professor of materials science and biomedical engineering, is developing microscale fuel cells that use methanol instead of expensive and unstable hydrogen, which is difficult to produce in large quantities.


"We envision a fuel cell system about the size of a cigarette lighter that could be refueled by inserting a small cartridge of methanol. So we are essentially developing a more efficient catalyst," Kumta said.

At present, most methanol fuel cells use noble metals like platinum and ruthenium for power. But researchers say those metals are extremely expensive.

The direct methanol fuel cell is powered by methanol and water. When the methanol and water make contact with a catalyst in the fuel cell, they break down into carbon dioxide, positively charged protons and negatively charged electrons. The protons are attracted by a special membrane that allows them to pass through, while blocking the path of the electrons. The electrons must pass through an external circuit to get around the membrane, creating an electrical current. The fuel cell produces carbon dioxide, which is vented away, and water, which can be recycled to use with additional methanol.

"One problem with these fuel cells is that not all the methanol gets properly catalyzed and that methanol can seep through the membrane, reducing its efficiency," Kumta said.

Kumta and his group are developing nanostructured catalyst compositions using novel chemistry methods that exhibit excellent catalytic activity compared to conventional standards catalysts.

The technology is currently being extended to develop the nanostructured catalysts on innovative nano-crystalline support systems that will likely exhibit much better reliability and stability compared with present systems, according to Kumta. Portable electronic devices, such as cell phones, personal digital assistants and laptop computers, may one day become the first widely used consumer items to take advantage of fuel cells, industry analysts report.

Chriss Swaney | EurekAlert!
Further information:
http://www.andrew.cmu.edu

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>