Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dusty Story

06.12.2005


In the mine, like in medicine, prevention is the best way of treatment. It means that it is easier to prevent an explosion than to fight with its consequences, which unfortunately turn sometimes into disasters. Explosion in coal mines happen, as a rule, because of accumulation of combustion agent - natural gas and/or slack - in the air underground. The natural gas and/or slack may explode spontaneously – simply because its concentration in the air has reached the critical value. To learn how much slack is accumulated in the coal mine will help the sensor developed by specialists of the Trapeznikov Institute of Management Problems, Russian Academy of Sciences, this institute is intended to invent various useful devices and management systems.



It should be noted that there are different ways to determine the quantity of accumulated dust, including that of slack. The easiest way is to pass a finger over a smooth surface, in the best case – over the varnished one. The method is demonstrative and tried by centuries, but it is not a quantitative one, and it would not work remotely. Instrument methods can be applied – for example, infrared sensors or piezoresonance sensors, which allow to solve the task accurately within micrograms, but they are unfortunately complicated, sometimes capricious and very expansive.

The sensor designed by the Muscovites ranks somewhere in the middle of the line. It meant that it promises to be sufficiently effective, i.e. automatic, quantitative and reliable, and at the same time simple and affordable, i.e. low-cost. It is called the radio-frequency sensor for quantity of accumulated slack.


The oscillatory circuit is the sensor’s detector element. On the flat substrate made of dielectric, for example, fluoroplastic, two wires – conductors and at the same time electrodes – are laid zigzaging in a specially turned rather shallow groove. This is the very oscillatory circuit, i.e. electromagnetic resonator, the parameters of which - resonance frequency and good quality – depend on characteristics of the environment. And thus they depend on the quantity of slack settled on the plate’s flatness and accordingly on the resonator groove. Sensitivity is determined by geometrics of the line – the distance between the conductors and their length.

Naturally, the sensor’s structure is such that it allows to take into account humidity and temperature fluctuations, although these fluctuations are not too large in coal mines – but precision is above all. Naturally, the authors also designed all necessary units and respective software for the sensor - electronic module converting resonator parameters into electric signal, interface block, computer controlling the system operation.

Probably the only drawback of the system is that it is not wireless. Cables and electric wiring are required to connect the sensor to the controlling computer. The maximum distance between the sensor and the computer is only 100 meters, although this is not little. However, miners would be glad to have such a sensor – during testing in the real mine circumstances the device worked precisely and reliably, the level of slack was measured accurate within almost 100 percent. It means that if mines had been equipped with such devices, at least part of explosions could have been prevented. When it comes to human lives, the opportunity to avoid the death of even one person is invaluable.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>