Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dusty Story

06.12.2005


In the mine, like in medicine, prevention is the best way of treatment. It means that it is easier to prevent an explosion than to fight with its consequences, which unfortunately turn sometimes into disasters. Explosion in coal mines happen, as a rule, because of accumulation of combustion agent - natural gas and/or slack - in the air underground. The natural gas and/or slack may explode spontaneously – simply because its concentration in the air has reached the critical value. To learn how much slack is accumulated in the coal mine will help the sensor developed by specialists of the Trapeznikov Institute of Management Problems, Russian Academy of Sciences, this institute is intended to invent various useful devices and management systems.



It should be noted that there are different ways to determine the quantity of accumulated dust, including that of slack. The easiest way is to pass a finger over a smooth surface, in the best case – over the varnished one. The method is demonstrative and tried by centuries, but it is not a quantitative one, and it would not work remotely. Instrument methods can be applied – for example, infrared sensors or piezoresonance sensors, which allow to solve the task accurately within micrograms, but they are unfortunately complicated, sometimes capricious and very expansive.

The sensor designed by the Muscovites ranks somewhere in the middle of the line. It meant that it promises to be sufficiently effective, i.e. automatic, quantitative and reliable, and at the same time simple and affordable, i.e. low-cost. It is called the radio-frequency sensor for quantity of accumulated slack.


The oscillatory circuit is the sensor’s detector element. On the flat substrate made of dielectric, for example, fluoroplastic, two wires – conductors and at the same time electrodes – are laid zigzaging in a specially turned rather shallow groove. This is the very oscillatory circuit, i.e. electromagnetic resonator, the parameters of which - resonance frequency and good quality – depend on characteristics of the environment. And thus they depend on the quantity of slack settled on the plate’s flatness and accordingly on the resonator groove. Sensitivity is determined by geometrics of the line – the distance between the conductors and their length.

Naturally, the sensor’s structure is such that it allows to take into account humidity and temperature fluctuations, although these fluctuations are not too large in coal mines – but precision is above all. Naturally, the authors also designed all necessary units and respective software for the sensor - electronic module converting resonator parameters into electric signal, interface block, computer controlling the system operation.

Probably the only drawback of the system is that it is not wireless. Cables and electric wiring are required to connect the sensor to the controlling computer. The maximum distance between the sensor and the computer is only 100 meters, although this is not little. However, miners would be glad to have such a sensor – during testing in the real mine circumstances the device worked precisely and reliably, the level of slack was measured accurate within almost 100 percent. It means that if mines had been equipped with such devices, at least part of explosions could have been prevented. When it comes to human lives, the opportunity to avoid the death of even one person is invaluable.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>