Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Dusty Story


In the mine, like in medicine, prevention is the best way of treatment. It means that it is easier to prevent an explosion than to fight with its consequences, which unfortunately turn sometimes into disasters. Explosion in coal mines happen, as a rule, because of accumulation of combustion agent - natural gas and/or slack - in the air underground. The natural gas and/or slack may explode spontaneously – simply because its concentration in the air has reached the critical value. To learn how much slack is accumulated in the coal mine will help the sensor developed by specialists of the Trapeznikov Institute of Management Problems, Russian Academy of Sciences, this institute is intended to invent various useful devices and management systems.

It should be noted that there are different ways to determine the quantity of accumulated dust, including that of slack. The easiest way is to pass a finger over a smooth surface, in the best case – over the varnished one. The method is demonstrative and tried by centuries, but it is not a quantitative one, and it would not work remotely. Instrument methods can be applied – for example, infrared sensors or piezoresonance sensors, which allow to solve the task accurately within micrograms, but they are unfortunately complicated, sometimes capricious and very expansive.

The sensor designed by the Muscovites ranks somewhere in the middle of the line. It meant that it promises to be sufficiently effective, i.e. automatic, quantitative and reliable, and at the same time simple and affordable, i.e. low-cost. It is called the radio-frequency sensor for quantity of accumulated slack.

The oscillatory circuit is the sensor’s detector element. On the flat substrate made of dielectric, for example, fluoroplastic, two wires – conductors and at the same time electrodes – are laid zigzaging in a specially turned rather shallow groove. This is the very oscillatory circuit, i.e. electromagnetic resonator, the parameters of which - resonance frequency and good quality – depend on characteristics of the environment. And thus they depend on the quantity of slack settled on the plate’s flatness and accordingly on the resonator groove. Sensitivity is determined by geometrics of the line – the distance between the conductors and their length.

Naturally, the sensor’s structure is such that it allows to take into account humidity and temperature fluctuations, although these fluctuations are not too large in coal mines – but precision is above all. Naturally, the authors also designed all necessary units and respective software for the sensor - electronic module converting resonator parameters into electric signal, interface block, computer controlling the system operation.

Probably the only drawback of the system is that it is not wireless. Cables and electric wiring are required to connect the sensor to the controlling computer. The maximum distance between the sensor and the computer is only 100 meters, although this is not little. However, miners would be glad to have such a sensor – during testing in the real mine circumstances the device worked precisely and reliably, the level of slack was measured accurate within almost 100 percent. It means that if mines had been equipped with such devices, at least part of explosions could have been prevented. When it comes to human lives, the opportunity to avoid the death of even one person is invaluable.

Sergey Komarov | alfa
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>