Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU commits €12.8 million to new methods to produce ethanol as vehicle fuel

14.10.2005


The EU is launching a new research project to develop cost-effective and environmentally friendly methods to mass produce ethanol as fuel for motor vehicles. The commitment is a major step toward the goal of an EU directive of replacing fossil fuels in the transport system by 5.75 percent by 2010. The initiative for the project comes from Lund Institute of Technology in Sweden and the French research institute Institut Français du Petrol.

The project, funded with €12.8 million, is to span four years and recently started with the first joint meeting in Paris of the 21 universities, research institutes, and companies that are participating in the project.

“The idea is for the project eventually to bring about new patents and commercialization opportunities” explains Guido Zacchi, professor of chemical engineering at Lund Institute of Technology (LTH). LTH and Lund University are the largest university partners in the project and are responsible for several components in NILE, New Improvement for Lignocellulosic Ethanol, as the project is called. The chief coordinator is Institut Français du Petrol.



The project has identified three high priority tasks that are judged to be especially urgent: a) to develop new enzymes to degrade cellulose in plant material (primarily coniferous wood and agricultural waste, such as wheat straw) into sugar; b) to develop several new strains of yeast to convert all types of sugar in biomass into ethanol; and c) to enhance process integration to reduce the amount of energy used in the process.

“We have already made so much progress that we can produce ethanol from biomass, for example, at the pilot plant in Örnsköldsvik. The great challenge for the ethanol industry today is that more cost- and resource-effective production is needed to allow the large-scale introduction of fuel ethanol made from biomass. To achieve this, it’s absolutely necessary to acquire more knowledge based on process-integrated research,” says Bärbel Hahn-Hägerdal, who is in charge of the technological development of the new strains of yeast that will be able to convert the various forms of sugar into ethanol. A total of five researchers and three doctoral students are involved in the project at LTH.

NILE is the only ethanol project to be granted funding from the EU’s Sixth Framework Program. Two other major pan-European research projects had applied for money to research the production of ethanol, but NILE was judged by EU to have the greatest potential in terms of content and partners. Other Swedish NILE partners are:

ETEK, which is responsible for operating the Swedish national ethanol pilot plant in Örnsköldsvik. LTH and Lund University play a major role in shaping the pilot trials and are on the scientific board that oversees the plant.

SEKAB, which is a major distributor of ethanol in Sweden and also a considerable presence in a European perspective.

BAFF, which is a foundation of industrial interests working to promote the development of technology and the introduction of ethanol as a fuel in Sweden.

Kristina Lindgärde | alfa
Further information:
http://www.lth.se

More articles from Power and Electrical Engineering:

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

nachricht New nanofiber marks important step in next generation battery development
13.03.2017 | Georgia Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>