Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotechnologists’ new plastic can see in the dark

10.01.2005


Imagine a home with "smart" walls responsive to the environment in the room, a digital camera sensitive enough to work in the dark, or clothing with the capacity to turn the sun’s power into electrical energy. Researchers at the University of Toronto have invented an infrared-sensitive material that could shortly turn these possibilities into realities.

In a paper to be published on the Nature Materials website Jan. 9, senior author Professor Ted Sargent, Nortel Networks – Canada Research Chair in Emerging Technologies at U of T’s Department of Electrical and Computer Engineering, and his team report on their achievement in tailoring matter to harvest the sun’s invisible rays.

"We made particles from semiconductor crystals which were exactly two, three or four nanometres in size. The nanoparticles were so small they remained dispersed in everyday solvents just like the particles in paint," explains Sargent. Then, they tuned the tiny nanocrystals to catch light at very short wavelengths. The result – a sprayable infrared detector.



Existing technology has given us solution-processible, light-sensitive materials that have made large, low-cost solar cells, displays, and sensors possible, but these materials have so far only worked in the visible light spectrum, says Sargent. "These same functions are needed in the infrared for many imaging applications in the medical field and for fibre optic communications," he says.

The discovery may also help in the quest for renewable energy sources. Flexible, roller-processed solar cells have the potential to harness the sun’s power, but efficiency, flexibility and cost are going to determine how that potential becomes practice, says Josh Wolfe, managing partner and nanotechnology venture capital investor at Lux Capital in Manhattan. Wolfe, who was not part of the research team, says the findings in the paper are significant: "These flexible photovoltaics could harness half of the sun’s spectrum not previously accessed."

Professor Peter Peumans of Stanford University, who has reviewed the U of T team’s research, also acknowledges the groundbreaking nature of the work. "Our calculations show that, with further improvements in efficiency, combining infrared and visible photovoltaics could allow up to 30 per cent of the sun’s radiant energy to be harnessed, compared to six per cent in today’s best plastic solar cells."
U of T electrical and computer engineering graduate student Steve MacDonald carried out many of the experiments that produced the world’s first solution-processed photovoltaic in the infrared. "The key was finding the right molecules to wrap around our nanoparticles," he explains. "Too long and the particles couldn’t deliver their electrical energy to our circuit; too short, and they clumped up, losing their nanoscale properties. It turned out that one nanometer – eight carbon atoms strung together in a chain – was ’just right’."

Sonnet L’Abbé | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Power and Electrical Engineering:

nachricht Fraunhofer Researchers Develop High-Pressure Sensors for Extreme Temperature
28.06.2017 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

nachricht Touch Displays WAY-AX and WAY-DX by WayCon
27.06.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>