Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Printable Silicon For Ultrahigh Performance Flexible Electronic Systems

18.06.2004


By carving specks of single crystal silicon from a bulk wafer and casting them onto sheets of plastic, scientists at the University of Illinois at Urbana-Champaign have demonstrated a route to ultrahigh performance, mechanically flexible thin-film transistors. The process could enable new applications in consumer electronics - such as inexpensive wall-to-wall displays and intelligent but disposable radio frequency identification tags - and could even be used in applications that require significant computing power.

"Conventional silicon devices are limited by the size of the silicon wafer, which is typically less than 12 inches in diameter," said John Rogers, a professor of materials science and engineering and co-author of a paper to appear in the June 28 issue of the journal Applied Physics Letters. "Instead of making the wafer bigger and costlier, we want to slice up the wafer and disperse it in such a way that we can then place pieces where we need them on large, low-cost substrates such as flexible plastics."

This approach has important advantages compared with paths for similar devices that use organic molecules for the semiconductor. Single-crystal silicon has extremely good electrical properties (roughly 1,000 times better than known organics) and its reliability and materials properties are well known from decades of research in silicon microelectronics.



To demonstrate the technique, Rogers and his colleagues fabricated single-crystal, microstructured silicon objects from wafers using conventional lithographic patterning and etching processes. The processing sequence generated objects of various shapes as small as 50 nanometers on a side. The researchers then used two approaches for transferring the objects to substrates to create high performance, thin-film transistors.

"In one approach, we used procedures that exploit high-resolution rubber stamps for transfer printing," said co-author Ralph Nuzzo, a professor of chemistry and director of the Frederick Seitz Materials Research Laboratory on the U. of I. campus. "In the other approach, the objects were dispersed in a solvent and then cast using solution-based printing techniques."

Both approaches can be implemented in a manufacturing environment, and would scale nicely to large-area formats, Nuzzo said. Separating the processing of the silicon from the fabrication of other transistor components enables the devices to be integrated with a wide range of material types, including low-cost plastics.

Fabricating circuits by continuous, high-speed printing techniques could offer different capabilities than can be achieved with existing silicon technologies, Rogers said. "We can think in terms of unconventional electronics - putting devices in places where standard silicon chips can’t go due to expense or geometry."

Not only could huge, wall-sized displays be built at far less cost, components could be printed on the insides of windshields and other non-flat surfaces. While current fabrication techniques favor flat chips, printing-based methods remove that constraint.

"Another aspect of low-cost electronic printing is embedding information technology into places where it didn’t exist before," Nuzzo said. "By inserting electronic intelligence into everyday items, we could exchange information and communicate in exciting new ways."

An example, he said, would be low-cost radio frequency identification tags that could take the place of ordinary product bar codes. Such tags could ease congestion in supermarket checkout lines and help busy homemakers maintain shopping lists.

"You can let your imagination run wild," Nuzzo said. "The functionality of an electronic circuit doesn’t have to be wired to a chip - it can be integrated into the architecture itself."

In addition to Nuzzo and Rogers, co-authors of the paper were visiting scholar Etienne Menard, postdoctoral researcher Dahl-Young Khang and graduate student Keon-Jae Lee. The Defense Advanced Research Projects Agency and the U.S. Department of Energy funded the work.

| University of Illinois
Further information:
http://www.uiuc.edu

More articles from Power and Electrical Engineering:

nachricht Squeezing every drop of fresh water from waste brine
30.05.2017 | University of California - Riverside

nachricht EU research project DEMETER strives for innovation in enzyme production technology
30.05.2017 | Deutsches Biomasseforschungszentrum

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>