Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Printable Silicon For Ultrahigh Performance Flexible Electronic Systems

18.06.2004


By carving specks of single crystal silicon from a bulk wafer and casting them onto sheets of plastic, scientists at the University of Illinois at Urbana-Champaign have demonstrated a route to ultrahigh performance, mechanically flexible thin-film transistors. The process could enable new applications in consumer electronics - such as inexpensive wall-to-wall displays and intelligent but disposable radio frequency identification tags - and could even be used in applications that require significant computing power.

"Conventional silicon devices are limited by the size of the silicon wafer, which is typically less than 12 inches in diameter," said John Rogers, a professor of materials science and engineering and co-author of a paper to appear in the June 28 issue of the journal Applied Physics Letters. "Instead of making the wafer bigger and costlier, we want to slice up the wafer and disperse it in such a way that we can then place pieces where we need them on large, low-cost substrates such as flexible plastics."

This approach has important advantages compared with paths for similar devices that use organic molecules for the semiconductor. Single-crystal silicon has extremely good electrical properties (roughly 1,000 times better than known organics) and its reliability and materials properties are well known from decades of research in silicon microelectronics.



To demonstrate the technique, Rogers and his colleagues fabricated single-crystal, microstructured silicon objects from wafers using conventional lithographic patterning and etching processes. The processing sequence generated objects of various shapes as small as 50 nanometers on a side. The researchers then used two approaches for transferring the objects to substrates to create high performance, thin-film transistors.

"In one approach, we used procedures that exploit high-resolution rubber stamps for transfer printing," said co-author Ralph Nuzzo, a professor of chemistry and director of the Frederick Seitz Materials Research Laboratory on the U. of I. campus. "In the other approach, the objects were dispersed in a solvent and then cast using solution-based printing techniques."

Both approaches can be implemented in a manufacturing environment, and would scale nicely to large-area formats, Nuzzo said. Separating the processing of the silicon from the fabrication of other transistor components enables the devices to be integrated with a wide range of material types, including low-cost plastics.

Fabricating circuits by continuous, high-speed printing techniques could offer different capabilities than can be achieved with existing silicon technologies, Rogers said. "We can think in terms of unconventional electronics - putting devices in places where standard silicon chips can’t go due to expense or geometry."

Not only could huge, wall-sized displays be built at far less cost, components could be printed on the insides of windshields and other non-flat surfaces. While current fabrication techniques favor flat chips, printing-based methods remove that constraint.

"Another aspect of low-cost electronic printing is embedding information technology into places where it didn’t exist before," Nuzzo said. "By inserting electronic intelligence into everyday items, we could exchange information and communicate in exciting new ways."

An example, he said, would be low-cost radio frequency identification tags that could take the place of ordinary product bar codes. Such tags could ease congestion in supermarket checkout lines and help busy homemakers maintain shopping lists.

"You can let your imagination run wild," Nuzzo said. "The functionality of an electronic circuit doesn’t have to be wired to a chip - it can be integrated into the architecture itself."

In addition to Nuzzo and Rogers, co-authors of the paper were visiting scholar Etienne Menard, postdoctoral researcher Dahl-Young Khang and graduate student Keon-Jae Lee. The Defense Advanced Research Projects Agency and the U.S. Department of Energy funded the work.

| University of Illinois
Further information:
http://www.uiuc.edu

More articles from Power and Electrical Engineering:

nachricht Ultrathin device harvests electricity from human motion
24.07.2017 | Vanderbilt University

nachricht Stanford researchers develop a new type of soft, growing robot
21.07.2017 | Stanford University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>