Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Printable Silicon For Ultrahigh Performance Flexible Electronic Systems

18.06.2004


By carving specks of single crystal silicon from a bulk wafer and casting them onto sheets of plastic, scientists at the University of Illinois at Urbana-Champaign have demonstrated a route to ultrahigh performance, mechanically flexible thin-film transistors. The process could enable new applications in consumer electronics - such as inexpensive wall-to-wall displays and intelligent but disposable radio frequency identification tags - and could even be used in applications that require significant computing power.

"Conventional silicon devices are limited by the size of the silicon wafer, which is typically less than 12 inches in diameter," said John Rogers, a professor of materials science and engineering and co-author of a paper to appear in the June 28 issue of the journal Applied Physics Letters. "Instead of making the wafer bigger and costlier, we want to slice up the wafer and disperse it in such a way that we can then place pieces where we need them on large, low-cost substrates such as flexible plastics."

This approach has important advantages compared with paths for similar devices that use organic molecules for the semiconductor. Single-crystal silicon has extremely good electrical properties (roughly 1,000 times better than known organics) and its reliability and materials properties are well known from decades of research in silicon microelectronics.



To demonstrate the technique, Rogers and his colleagues fabricated single-crystal, microstructured silicon objects from wafers using conventional lithographic patterning and etching processes. The processing sequence generated objects of various shapes as small as 50 nanometers on a side. The researchers then used two approaches for transferring the objects to substrates to create high performance, thin-film transistors.

"In one approach, we used procedures that exploit high-resolution rubber stamps for transfer printing," said co-author Ralph Nuzzo, a professor of chemistry and director of the Frederick Seitz Materials Research Laboratory on the U. of I. campus. "In the other approach, the objects were dispersed in a solvent and then cast using solution-based printing techniques."

Both approaches can be implemented in a manufacturing environment, and would scale nicely to large-area formats, Nuzzo said. Separating the processing of the silicon from the fabrication of other transistor components enables the devices to be integrated with a wide range of material types, including low-cost plastics.

Fabricating circuits by continuous, high-speed printing techniques could offer different capabilities than can be achieved with existing silicon technologies, Rogers said. "We can think in terms of unconventional electronics - putting devices in places where standard silicon chips can’t go due to expense or geometry."

Not only could huge, wall-sized displays be built at far less cost, components could be printed on the insides of windshields and other non-flat surfaces. While current fabrication techniques favor flat chips, printing-based methods remove that constraint.

"Another aspect of low-cost electronic printing is embedding information technology into places where it didn’t exist before," Nuzzo said. "By inserting electronic intelligence into everyday items, we could exchange information and communicate in exciting new ways."

An example, he said, would be low-cost radio frequency identification tags that could take the place of ordinary product bar codes. Such tags could ease congestion in supermarket checkout lines and help busy homemakers maintain shopping lists.

"You can let your imagination run wild," Nuzzo said. "The functionality of an electronic circuit doesn’t have to be wired to a chip - it can be integrated into the architecture itself."

In addition to Nuzzo and Rogers, co-authors of the paper were visiting scholar Etienne Menard, postdoctoral researcher Dahl-Young Khang and graduate student Keon-Jae Lee. The Defense Advanced Research Projects Agency and the U.S. Department of Energy funded the work.

| University of Illinois
Further information:
http://www.uiuc.edu

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>