Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cheaper wastewater-fueled device produces more electricity

16.06.2004


Penn State environmental engineers have removed and replaced one of the most expensive parts of their prototype microbial fuel cell and the device now costs two-thirds less and produces nearly six times more electricity from domestic wastewater.



Earlier this year, the Penn State team was the first to develop a microbial fuel cell (MFC) that can generate electricity while simultaneously cleaning domestic wastewater skimmed from the settling pond of a sewage treatment plant. Now, they’ve shown that by modifying their original MFC to make it cheaper, they can also boost electricity production from about 26 milliwatts per square meter to about 146 milliwatts per square meter.

Dr. Bruce Logan, the Kappe professor of environmental engineering, directs the project. He says, "The new design has moved the technology closer to our goal of 1000 milliwatts per square meter."


He notes that they have hooked up an MFC built on the Penn State design principles to run a three-milliWatt fan. (See video at http://www.engr.psu.edu/ce/enve/MFC-pictures.html) Calculations show that a typical wastewater treatment plant that had a Penn State MFC in place could power the fan with just 5.5 oz of wastewater or a reactor smaller than a teacup.

The advance is described in a paper, Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane, released online and scheduled for a future issue of Environmental Science and Technology. The authors are Dr. Hong Liu, postdoctoral researcher in environmental engineering, and Logan.

The Penn State team modified their original fuel cell by removing the polymeric proton exchange membrane (PEM) that previously was bonded to the cathode and substituting carbon paper for the electrodes.

Microbial fuel cells produce current through the action of bacteria that can pass electrons to an anode, the negative electrode of a fuel cell. The electrons flow from the anode through a wire to a cathode, the positive electrode of a fuel cell, where they combine with hydrogen ions (protons) and oxygen to form water.

The naturally-occurring bacteria in wastewater drive power production via a reaction that allows them to transport electrons from their cell surface to the anode. In addition, a reaction (oxidation) that occurs in the interior of the bacterial cell lowers the biochemical oxygen demand, cleaning the water.

The new prototype consists of carbon paper placed on opposite ends of a plastic tube about an inch and a half long and a little over an inch in diameter. Carbon paper on one end is the anode and carbon paper, which also contains a small amount of platinum, forms the cathode on the other end. Platinum wire completes the circuit. The carbon paper allows oxygen in air to directly react at the cathode. So, there is no need to bubble air into the water at the cathode as is required in a typical two chamber MFC.

Logan notes, "By eliminating the PEM, which was one of the most expensive components, we bring the cost down significantly. Substituting carbon paper for graphite rods further reduces the cost. I’m optimistic that MFCs may be able to help reduce the $25 billion annual cost of wastewater treatment in the U.S. and provide access to sanitation technologies to countries throughout the world."


The project was supported by a grant from the National Science Foundation and Penn State’s Huck Institute of Life Sciences.

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Power and Electrical Engineering:

nachricht Touch Displays WAY-AX and WAY-DX by WayCon
27.06.2017 | WayCon Positionsmesstechnik GmbH

nachricht Air pollution casts shadow over solar energy production
27.06.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>