Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


From fryer to fuel tank, U-M students make a case for waste elimination and energy recovery


University of Michigan engineering students have discovered a redeeming quality in junk food: waste grease produced in campus cafeterias that can be used to make biodiesel fuel for U-M buses.

During a term project for a course in environmental sustainability, a four-student team led by Lisa Colosi and Andres Clarens concluded and demonstrated that it is economically and technically feasible to harvest the 10,700 gallons of waste grease produced in the 10 campus dining halls to make an effective biodiesel fuel, which they produced in the lab and tested out on a small U-M tractor.

The students’ vision, "from the fryer to the fuel tank" could save an institution that produces significant amounts of waste grease thousands of dollars in transportation and disposal costs by adopting even a portion of their proposal, said the course instructor, Walter Weber Jr., the Gordon M. Fair and Earnest Boyce Distinguished University Professor of Chemical and Environmental Engineering and director of the College of Engineering Concentrations in Environmental Sustainability (ConsEnSus) Program.

The students tested their theory on the U-M campus, made easier because the University already uses some biodiesel fuel. As part of its commitment to being a green university, U-M recently began purchasing 60,000 gallons of biodiesel fuel from a commercial vendor to blend with regular diesel fuel to make up the 300,000 gallons of combined fuel it uses annually. The principal raw material for regular diesel fuel is petroleum. The principal raw material for the biodiesel fuel purchased by U-M is oil extracted from soy beans.

"The challenge the students had in this project was to produce a satisfactory or better substitute biodiesel fuel from waste cooking oils," Weber said. "And they did it."

The students collected waste grease from deep fryers in the West Quad cafeteria and mixed it in a tank with potassium hydroxide and methanol to create a reaction that produced a glycerine and fatty acid methyl ester solution. They then separated the glycerine and heated the residual solution to evaporate excess alcohol and water to produce their more than satisfactory biodiesel fuel. The report the students submitted further suggested that the glycerin by-product of the process could be cured and used to make a biodegradable alternative to commercial soaps for use on campus.

By replacing 10,700 gallons of the 60,000 gallons of commercial soy bean oil biodiesel with the students’ product, the report projected that U-M could achieve an estimated $28,000 annual cost savings. Weber said this annual savings could be increased to more than $150,000 by incorporating waste greases from the University Health System cafeterias and area restaurants. The report recommends that the University construct a pilot processing facility on campus to further demonstrate the efficacy of the process.

"The project provides an intriguing idea and presents possible options for increasing our waste recycling while yielding a usable product," said Dave Miller, director of U-M’s Parking and Transportation Services. "We are exploring the research results and analyzing the potential impact on our existing operations."

Among the things U-M would need to confirm are the quantity and quality of the grease and the costs involved to create a stable supply, he said.

The potential economic and environmental benefit is huge, Weber said, to any institution. that produces large quanties of waste. For instance, the University produces nearly 11,000 gallons of waste fat annually that is removed at a cost of 95 cents a gallon. Even if an institution determined it didn’t want to produce the biodiesel fuel itself, it could still realize significant savings in disposal costs and perform an environmentally friendly deed by harvesting the waste grease and contracting a vendor to convert it to biodiesel fuel.

The U-M College of Engineering is celebrating its 150th anniversary this year, and is consistently ranked among the top engineering schools in the world. The college is comprised of 11 academic departments: aerospace engineering; atmospheric, oceanic and space sciences; biomedical engineering; chemical engineering; civil and environmental engineering; electrical engineering and computer science; industrial and operations engineering; materials science and engineering; mechanical engineering; naval architecture and marine engineering; and nuclear engineering and radiological sciences. Each year the college enrolls more than 7,000 undergraduate and graduate students and grants about 1,200 undergraduate degrees and 800 masters and doctoral degrees.

Laura Bailey | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>