Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Another Twist in the Field of Superconductivity


Researchers at the U.S. Department of Energy’s Brookhaven National Laboratory have discovered an interesting type of electronic behavior in a recently discovered class of superconductors known as cobalt oxides, or cobaltates. These materials operate quite differently from other oxide superconductors, namely the copper oxides (or cuprates), which are commonly referred to as high-temperature superconductors.

When traditional superconductors are cooled to nearly absolute zero (0 Kelvin or –452 degrees Fahrenheit), pairs of negatively charged electrons exchange packets of vibrational energy known as phonons. This mechanism overcomes the repulsion of the like-charged particles and allows them to move together to carry electrical current with virtually no resistance. But the mechanism for superconductivity in the high-temperature cuprates — which act as superconductors at temperatures as “warm” as 138 K — is still one of the “hottest” mysteries in condensed matter physics. Above the superconducting transition temperature the cuprates do not exhibit normal electronlike behavior, so it’s unclear either how or what is pairing to carry the current.

With the discovery of a new class of oxide superconductors, the cobaltates (which become superconducting at a temperature around 5 K), scientists were naturally curious whether they could learn something about their mechanism to shed light upon this problem. “What we’ve found,” says Brookhaven physicist Peter Johnson, “has opened up another twist.”

As Johnson’s group cooled the cobalt-oxide materials, they observed electron-like excitations at temperatures well above the so-called transition temperature where the materials become superconductors. “If we had discovered these before we discovered the cuprates we’d probably think the same electron pairing mechanism was responsible for all superconductivity,” Johnson says.

Johnson will explore the implications of this work in his talk during the session on “Novel and Complex Oxides IV” on Tuesday, March 23, at 2:42 p.m. in room 511E. This research is funded by the Office of Basic Energy Sciences within the Department of Energy’s Office of Science.

Karen McNulty Walsh | BNL
Further information:

More articles from Power and Electrical Engineering:

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht 3-D-printed magnets
26.10.2016 | Vienna University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>