Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Another Twist in the Field of Superconductivity

24.03.2004


Researchers at the U.S. Department of Energy’s Brookhaven National Laboratory have discovered an interesting type of electronic behavior in a recently discovered class of superconductors known as cobalt oxides, or cobaltates. These materials operate quite differently from other oxide superconductors, namely the copper oxides (or cuprates), which are commonly referred to as high-temperature superconductors.



When traditional superconductors are cooled to nearly absolute zero (0 Kelvin or –452 degrees Fahrenheit), pairs of negatively charged electrons exchange packets of vibrational energy known as phonons. This mechanism overcomes the repulsion of the like-charged particles and allows them to move together to carry electrical current with virtually no resistance. But the mechanism for superconductivity in the high-temperature cuprates — which act as superconductors at temperatures as “warm” as 138 K — is still one of the “hottest” mysteries in condensed matter physics. Above the superconducting transition temperature the cuprates do not exhibit normal electronlike behavior, so it’s unclear either how or what is pairing to carry the current.

With the discovery of a new class of oxide superconductors, the cobaltates (which become superconducting at a temperature around 5 K), scientists were naturally curious whether they could learn something about their mechanism to shed light upon this problem. “What we’ve found,” says Brookhaven physicist Peter Johnson, “has opened up another twist.”


As Johnson’s group cooled the cobalt-oxide materials, they observed electron-like excitations at temperatures well above the so-called transition temperature where the materials become superconductors. “If we had discovered these before we discovered the cuprates we’d probably think the same electron pairing mechanism was responsible for all superconductivity,” Johnson says.

Johnson will explore the implications of this work in his talk during the session on “Novel and Complex Oxides IV” on Tuesday, March 23, at 2:42 p.m. in room 511E. This research is funded by the Office of Basic Energy Sciences within the Department of Energy’s Office of Science.

Karen McNulty Walsh | BNL
Further information:
http://www.bnl.gov/bnlweb/pubaf/pr/2004/bnlpr032304a.htm

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>