Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Los Alamos leading fast-paced reactor research to power planned journey to Jupiter’s icy moons


A proposed U.S. mission to investigate three ice-covered moons of Jupiter will demand fast-paced research, fabrication and realistic non-nuclear testing of a prototype nuclear reactor within two years, says a Los Alamos National Laboratory scientist.

The roots of this build and test effort have been under way at Los Alamos since the mid-1990s, said David Poston, leader of the Space Fission Power Team in Los Alamos’ Nuclear Design and Risk Analysis Group.

NASA proposes using use electrical ion propulsion powered by a nuclear reactor for its Jupiter Icy Moons Orbiter, an element of Project Prometheus, which is scheduled for launch after 2011. However, the United States hasn’t flown a space fission system since 1965.

Poston discussed technical requirements for such a fission reactor in two presentations Monday at the Space Technology and Applications International Forum in Albuquerque. Los Alamos is a co-sponsor of the forum. Poston discussed "The Impact of Core Cooling Technology Options on JIMO Reactor Designs" and "The Impact of Power and Lifetime Requirements on JIMO Reactor Designs."

Los Alamos is leading reactor design for the Jupiter Icy Moons Orbiter mission, which would orbit Callisto, Ganymede and Europa to study their makeup, possible vast oceans beneath the ice, their history and potential for sustaining life. Los Alamos is responsible for such key reactor technologies as nuclear fuel, beryllium components, heat pipes and diagnostic instruments, as well as nuclear criticality testing of development and flight reactors.

"Nuclear power has long been recognized as an enabling technology for exploring and expanding into space, and fission reactors offer unprecedented power and propulsion capabilities," Poston said.

The JIMO mission would demand a safe, low-mass, high-temperature reactor that can be developed and qualified quickly, can operate reliably in the harsh environment of space for more than a decade, and can meet a wide range of mission and spacecraft requirements, he said.

A science mission to explore the icy Jovian moons would require kilowatts of electrical power for the scientific payloads and up to 100 kilowatts of electricity for ion propulsion to propel the spacecraft to Jupiter, maneuver within the Jovian system and allow rendezvous with the moons. The reactor also would power advanced science experiments and systems to send data to Earth at high rates.

Despite the lack of U.S. space reactor research in recent decades, Los Alamos has continued to examine technologies and concepts for a rapid and affordable development program. Working with NASA’s Marshall Space Flight Center, Los Alamos has resolved many hardware issues at the component and system level.

Los Alamos and NASA-Marshall researchers, working with colleagues from NASA’s Jet Propulsion Laboratory and Sandia National Laboratories, have built successively more powerful nuclear electric propulsion reactor components, including a 30-kilowatt reactor core without fuel, one-third of a 100-kilowatt system (core plus heat exchanger) and a single module suitable for a 500-kilowatt reactor core. Extensive non-nuclear testing of these and other components continues.

Most researchers have agreed on the best fuels and reactor construction materials for the proposed fast-spectrum, externally controlled JIMO reactor. The major design choice that remains is how best to transport power from the reactor core to the power conversion system.

Los Alamos and NASA are examining three primary options for core cooling: pumped liquid-metal sodium or lithium; sodium or lithium liquid metal heat pipes; and inert helium or helium-xenon gas. Many of these options have been tested for decades for terrestrial reactors, but the reactor for JIMO would be unique, Poston said.

"We believe the power and lifetime potential of space fission reactors could easily accommodate the requirements of future NASA missions," Poston said. "However, it is clear that reactor performance and technical risks are tightly coupled to power and lifetime requirements, so we must thoroughly understand these technical risks before developing the first system. For example, there are fewer technical and development challenges for a 500-kilowatt-thermal reactor than a 1,000-kilowatt-thermal reactor.

"The first step needs to be small enough to ensure success and to put into place the experience, expertise and infrastructure necessary for more advanced systems," Poston concluded. "After that, we can move on to the systems needed for even more ambitious space exploration, such as multi-megawatt nuclear electric propulsion or nuclear thermal rockets. Our near-term efforts must be focused on making the first mission succeed."

Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy and works in partnership with NNSA’s Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos develops and applies science and technology to ensure the safety and reliability of the U.S. nuclear deterrent; reduce the threat of weapons of mass destruction, proliferation and terrorism; and solve national problems in defense, energy, environment and infrastructure.

Jim Danneskiold | LANL
Further information:

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>