Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Los Alamos leading fast-paced reactor research to power planned journey to Jupiter’s icy moons

12.02.2004


A proposed U.S. mission to investigate three ice-covered moons of Jupiter will demand fast-paced research, fabrication and realistic non-nuclear testing of a prototype nuclear reactor within two years, says a Los Alamos National Laboratory scientist.



The roots of this build and test effort have been under way at Los Alamos since the mid-1990s, said David Poston, leader of the Space Fission Power Team in Los Alamos’ Nuclear Design and Risk Analysis Group.

NASA proposes using use electrical ion propulsion powered by a nuclear reactor for its Jupiter Icy Moons Orbiter, an element of Project Prometheus, which is scheduled for launch after 2011. However, the United States hasn’t flown a space fission system since 1965.


Poston discussed technical requirements for such a fission reactor in two presentations Monday at the Space Technology and Applications International Forum in Albuquerque. Los Alamos is a co-sponsor of the forum. Poston discussed "The Impact of Core Cooling Technology Options on JIMO Reactor Designs" and "The Impact of Power and Lifetime Requirements on JIMO Reactor Designs."

Los Alamos is leading reactor design for the Jupiter Icy Moons Orbiter mission, which would orbit Callisto, Ganymede and Europa to study their makeup, possible vast oceans beneath the ice, their history and potential for sustaining life. Los Alamos is responsible for such key reactor technologies as nuclear fuel, beryllium components, heat pipes and diagnostic instruments, as well as nuclear criticality testing of development and flight reactors.

"Nuclear power has long been recognized as an enabling technology for exploring and expanding into space, and fission reactors offer unprecedented power and propulsion capabilities," Poston said.

The JIMO mission would demand a safe, low-mass, high-temperature reactor that can be developed and qualified quickly, can operate reliably in the harsh environment of space for more than a decade, and can meet a wide range of mission and spacecraft requirements, he said.

A science mission to explore the icy Jovian moons would require kilowatts of electrical power for the scientific payloads and up to 100 kilowatts of electricity for ion propulsion to propel the spacecraft to Jupiter, maneuver within the Jovian system and allow rendezvous with the moons. The reactor also would power advanced science experiments and systems to send data to Earth at high rates.

Despite the lack of U.S. space reactor research in recent decades, Los Alamos has continued to examine technologies and concepts for a rapid and affordable development program. Working with NASA’s Marshall Space Flight Center, Los Alamos has resolved many hardware issues at the component and system level.

Los Alamos and NASA-Marshall researchers, working with colleagues from NASA’s Jet Propulsion Laboratory and Sandia National Laboratories, have built successively more powerful nuclear electric propulsion reactor components, including a 30-kilowatt reactor core without fuel, one-third of a 100-kilowatt system (core plus heat exchanger) and a single module suitable for a 500-kilowatt reactor core. Extensive non-nuclear testing of these and other components continues.

Most researchers have agreed on the best fuels and reactor construction materials for the proposed fast-spectrum, externally controlled JIMO reactor. The major design choice that remains is how best to transport power from the reactor core to the power conversion system.

Los Alamos and NASA are examining three primary options for core cooling: pumped liquid-metal sodium or lithium; sodium or lithium liquid metal heat pipes; and inert helium or helium-xenon gas. Many of these options have been tested for decades for terrestrial reactors, but the reactor for JIMO would be unique, Poston said.

"We believe the power and lifetime potential of space fission reactors could easily accommodate the requirements of future NASA missions," Poston said. "However, it is clear that reactor performance and technical risks are tightly coupled to power and lifetime requirements, so we must thoroughly understand these technical risks before developing the first system. For example, there are fewer technical and development challenges for a 500-kilowatt-thermal reactor than a 1,000-kilowatt-thermal reactor.

"The first step needs to be small enough to ensure success and to put into place the experience, expertise and infrastructure necessary for more advanced systems," Poston concluded. "After that, we can move on to the systems needed for even more ambitious space exploration, such as multi-megawatt nuclear electric propulsion or nuclear thermal rockets. Our near-term efforts must be focused on making the first mission succeed."

Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy and works in partnership with NNSA’s Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos develops and applies science and technology to ensure the safety and reliability of the U.S. nuclear deterrent; reduce the threat of weapons of mass destruction, proliferation and terrorism; and solve national problems in defense, energy, environment and infrastructure.

Jim Danneskiold | LANL
Further information:
http://www.lanl.gov/worldview/news/releases/archive/04-005.shtml

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>