Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New light-emitting transistor could revolutionize electronics industry

06.01.2004


Put the inventor of the light-emitting diode and the maker of the world’s fastest transistor together in a research laboratory and what kinds of bright ideas might surface? One answer is a light-emitting transistor that could revolutionize the electronics industry.




Professors Nick Holonyak Jr. and Milton Feng at the University of Illinois at Urbana-Champaign have uncovered a light-emitting transistor that could make the transistor the fundamental element in optoelectronics as well as in electronics. The scientists report their discovery in the Jan. 5 issue of the journal Applied Physics Letters.

“We have demonstrated light emission from the base layer of a heterojunction bipolar transistor, and showed that the light intensity can be controlled by varying the base current,” said Holonyak, a John Bardeen Professor of Electrical and Computer Engineering and Physics at Illinois. Holonyak invented the first practical light-emitting diode and the first semiconductor laser to operate in the visible spectrum.


“This work is still in the early stage, so it is not yet possible to say what all the applications will be,” Holonyak said. “But a light-emitting transistor opens up a rich domain of integrated circuitry and high-speed signal processing that involves both electrical signals and optical signals.”

A transistor usually has two ports: one for input and one for output. “Our new device has three ports: an input, an electrical output and an optical output,” said Feng, the Holonyak Professor of Electrical and Computer Engineering at Illinois. “This means that we can interconnect optical and electrical signals for display or communication purposes.” Feng is credited with creating the world’s fastest bipolar transistor, a device that operates at a frequency of 509 gigahertz.

Graduate student Walid Hafez fabricated the light-emitting transistor in the university’s Micro and Nanotechnology Laboratory. Unlike traditional transistors, which are built from silicon and germanium, the light-emitting transistors are made from indium gallium phosphide and gallium arsenide.

“In a bipolar device, there are two kinds of injected carriers: negatively charged electrons and positively charged holes,” Holonyak said. “Some of these carriers will recombine rapidly, supported by a base current that is essential for the normal transistor function.”

The recombination process in indium gallium phosphide and gallium arsenide materials also creates infrared photons, the “light” in the researchers’ light-emitting transistors. “In the past, this base current has been regarded as a waste current that generates unwanted heat,” Holonyak said. “We’ve shown that for a certain type of transistor, the base current creates light that can be modulated at transistor speed.”

Although the recombination process is the same as that which occurs in
light-emitting diodes, the photons in light-emitting transistors are generated under much higher speed conditions. So far, the researchers have demonstrated the modulation of light emission in phase with a base current in transistors operating at a frequency of 1 megahertz. Much higher speeds are considered certain.

“At such speeds, optical interconnects could replace electrical wiring between electronic components on a circuit board,” Feng said. This work could be the beginning of an era in which photons are directed around a chip in much the same fashion as electrons have been maneuvered on conventional chips.

“In retrospect, we could say the groundwork for this was laid more than 56 years ago with John Bardeen and Walter Brattain and their first germanium transistor,” said Holonyak, who was Bardeen’s first graduate student. “But the direct recombination involving a photon is weak in germanium materials, and John and Walter just wouldn’t have seen the light – even if they had looked. If John were alive and we showed him this device, he would have to have a big grin.”

James E. Kloeppel | UIUC
Further information:
http://www.news.uiuc.edu/news/04/0105LET.html

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>