Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart electric grid of the future is in development

24.09.2003


Plans are underway to test new system



The nations current electric grid system will not work in the future with solar and wind farms providing substantial but intermittent power over long distances.

By 2050, it will take between 15 and 20 Terawatts (TW) of electric power to supply the North American economy. A little under 7 TW is currently used, with most of that consumed in the United States. The "Smart Electric Grid of the Future" must be able to efficiently and securely deliver this two- to three-fold-increase in power to all corners of the continent, in addition to being invulnerable to security breaches, attacks, natural disasters, and mechanical failures. The country can ill afford more blackouts like August 14, 2003.


Researchers at Columbia University have assembled a national team of scientists, technologists, security and intelligence experts to spearhead development of this "Smart Electric Grid"-a lean and efficient electrical delivery system that can meet the future energy and security demands of the nation.

Dr. Roger N. Anderson and Albert Boulanger from the Lamont-Doherty Earth Observatory, a member of The Earth Institute at Columbia University, along with colleagues from Rice University’s Center for Nano Scale Science & Technology, the Texas Energy Center, and the Texas Superconductivity Center, have developed the framework for a "Smart Electric Grid," and plans are underway to test their system in Texas as well as the Northeast.

"We plan to integrate new technologies with the public policies, economic incentives and regulation changes that will be required to produce the new electric power system. The plan calls for a National Test Bed to put designs and innovations to practical use. A smarter and more capable system is essential to the future of economic growth and vitality for all of North America, and we intend to build the demonstration projects that will show the way to the future grid" said Anderson.

The technologies that the Columbia Team are working on will smartly control the complex system associated with the continent’s vast electrical power grid, which must interconnect 200 million asynchronous house, block, community, business, industry, town, and regional generation, transmission, distribution and storage systems.

In the immediate future, vast new renewable energy sources from wind, solar, and geothermal power generation must be added to gas, coal, hydroelectric and nuclear sources of the present. The new "Smart Electric Grid" must improve efficiency by 50% or more in order for this power technology revolution to be affordable.

In addition, it must be far more sophisticated from a computerized control standpoint in order to deal with unpredictable and time-varying green power sources such as giant wind and solar farms located thousands of miles from metropolitan users. Distributed generation and local power storage at consumer and manufacturing sites must be designed and tested to further fortify Grid stability and safety from terrorism, as well as better defend it from the usual weather and mechanical outages.

Columbia feels it is imperative that the development of the new Smart Grid system be a top National priority and that it be open to continual innovation unlike the current electricity system with its limited Research and Development budgets.

Relevant Lectures:

"Our Energy Challenge"
September 23, 2003, 7:30 p.m. in the Low Library Rotunda, Columbia University
Nobel Laureate Richard E. Smalley, Rice University

"Shocked by the Dark"
October 30, time tbd, Davis Auditorium, Columbia University
Dr. Roger N. Anderson, Columbia University

The Lamont-Doherty Earth Observatory, a member of The Earth Institute at Columbia University, is one of the world’s leading research centers examining the planet from its core to its atmosphere, across every continent and every ocean. From global climate change to earthquakes, volcanoes, environmental hazards and beyond, Observatory scientists provide the basic knowledge of Earth systems needed to inform the future health and habitability of our planet. For more information, visit http://www.ldeo.columbia.edu.

The Earth Institute at Columbia University is the world’s leading academic center for the integrated study of Earth, its environment, and society. The Earth Institute builds upon excellence in the core disciplines-Earth sciences, biological sciences, engineering sciences, social sciences and health sciences-and stresses cross-disciplinary approaches to complex problems. Through its research training and global partnerships, it mobilizes science and technology to advance sustainable development, while placing special emphasis on the needs of the world’s poor. For more information please see http://www.earth.columbia.edu.

Mary Tobin | EurekAlert!
Further information:
http://www.ldeo.columbia.edu/
http://www.earth.columbia.edu

More articles from Power and Electrical Engineering:

nachricht New welding process joins dissimilar sheets better
28.09.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht Cooling buildings with solar heat
26.09.2016 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>