Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart electric grid of the future is in development

24.09.2003


Plans are underway to test new system



The nations current electric grid system will not work in the future with solar and wind farms providing substantial but intermittent power over long distances.

By 2050, it will take between 15 and 20 Terawatts (TW) of electric power to supply the North American economy. A little under 7 TW is currently used, with most of that consumed in the United States. The "Smart Electric Grid of the Future" must be able to efficiently and securely deliver this two- to three-fold-increase in power to all corners of the continent, in addition to being invulnerable to security breaches, attacks, natural disasters, and mechanical failures. The country can ill afford more blackouts like August 14, 2003.


Researchers at Columbia University have assembled a national team of scientists, technologists, security and intelligence experts to spearhead development of this "Smart Electric Grid"-a lean and efficient electrical delivery system that can meet the future energy and security demands of the nation.

Dr. Roger N. Anderson and Albert Boulanger from the Lamont-Doherty Earth Observatory, a member of The Earth Institute at Columbia University, along with colleagues from Rice University’s Center for Nano Scale Science & Technology, the Texas Energy Center, and the Texas Superconductivity Center, have developed the framework for a "Smart Electric Grid," and plans are underway to test their system in Texas as well as the Northeast.

"We plan to integrate new technologies with the public policies, economic incentives and regulation changes that will be required to produce the new electric power system. The plan calls for a National Test Bed to put designs and innovations to practical use. A smarter and more capable system is essential to the future of economic growth and vitality for all of North America, and we intend to build the demonstration projects that will show the way to the future grid" said Anderson.

The technologies that the Columbia Team are working on will smartly control the complex system associated with the continent’s vast electrical power grid, which must interconnect 200 million asynchronous house, block, community, business, industry, town, and regional generation, transmission, distribution and storage systems.

In the immediate future, vast new renewable energy sources from wind, solar, and geothermal power generation must be added to gas, coal, hydroelectric and nuclear sources of the present. The new "Smart Electric Grid" must improve efficiency by 50% or more in order for this power technology revolution to be affordable.

In addition, it must be far more sophisticated from a computerized control standpoint in order to deal with unpredictable and time-varying green power sources such as giant wind and solar farms located thousands of miles from metropolitan users. Distributed generation and local power storage at consumer and manufacturing sites must be designed and tested to further fortify Grid stability and safety from terrorism, as well as better defend it from the usual weather and mechanical outages.

Columbia feels it is imperative that the development of the new Smart Grid system be a top National priority and that it be open to continual innovation unlike the current electricity system with its limited Research and Development budgets.

Relevant Lectures:

"Our Energy Challenge"
September 23, 2003, 7:30 p.m. in the Low Library Rotunda, Columbia University
Nobel Laureate Richard E. Smalley, Rice University

"Shocked by the Dark"
October 30, time tbd, Davis Auditorium, Columbia University
Dr. Roger N. Anderson, Columbia University

The Lamont-Doherty Earth Observatory, a member of The Earth Institute at Columbia University, is one of the world’s leading research centers examining the planet from its core to its atmosphere, across every continent and every ocean. From global climate change to earthquakes, volcanoes, environmental hazards and beyond, Observatory scientists provide the basic knowledge of Earth systems needed to inform the future health and habitability of our planet. For more information, visit http://www.ldeo.columbia.edu.

The Earth Institute at Columbia University is the world’s leading academic center for the integrated study of Earth, its environment, and society. The Earth Institute builds upon excellence in the core disciplines-Earth sciences, biological sciences, engineering sciences, social sciences and health sciences-and stresses cross-disciplinary approaches to complex problems. Through its research training and global partnerships, it mobilizes science and technology to advance sustainable development, while placing special emphasis on the needs of the world’s poor. For more information please see http://www.earth.columbia.edu.

Mary Tobin | EurekAlert!
Further information:
http://www.ldeo.columbia.edu/
http://www.earth.columbia.edu

More articles from Power and Electrical Engineering:

nachricht Organic-inorganic heterostructures with programmable electronic properties
29.03.2017 | Technische Universität Dresden

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>