Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart electric grid of the future is in development

24.09.2003


Plans are underway to test new system



The nations current electric grid system will not work in the future with solar and wind farms providing substantial but intermittent power over long distances.

By 2050, it will take between 15 and 20 Terawatts (TW) of electric power to supply the North American economy. A little under 7 TW is currently used, with most of that consumed in the United States. The "Smart Electric Grid of the Future" must be able to efficiently and securely deliver this two- to three-fold-increase in power to all corners of the continent, in addition to being invulnerable to security breaches, attacks, natural disasters, and mechanical failures. The country can ill afford more blackouts like August 14, 2003.


Researchers at Columbia University have assembled a national team of scientists, technologists, security and intelligence experts to spearhead development of this "Smart Electric Grid"-a lean and efficient electrical delivery system that can meet the future energy and security demands of the nation.

Dr. Roger N. Anderson and Albert Boulanger from the Lamont-Doherty Earth Observatory, a member of The Earth Institute at Columbia University, along with colleagues from Rice University’s Center for Nano Scale Science & Technology, the Texas Energy Center, and the Texas Superconductivity Center, have developed the framework for a "Smart Electric Grid," and plans are underway to test their system in Texas as well as the Northeast.

"We plan to integrate new technologies with the public policies, economic incentives and regulation changes that will be required to produce the new electric power system. The plan calls for a National Test Bed to put designs and innovations to practical use. A smarter and more capable system is essential to the future of economic growth and vitality for all of North America, and we intend to build the demonstration projects that will show the way to the future grid" said Anderson.

The technologies that the Columbia Team are working on will smartly control the complex system associated with the continent’s vast electrical power grid, which must interconnect 200 million asynchronous house, block, community, business, industry, town, and regional generation, transmission, distribution and storage systems.

In the immediate future, vast new renewable energy sources from wind, solar, and geothermal power generation must be added to gas, coal, hydroelectric and nuclear sources of the present. The new "Smart Electric Grid" must improve efficiency by 50% or more in order for this power technology revolution to be affordable.

In addition, it must be far more sophisticated from a computerized control standpoint in order to deal with unpredictable and time-varying green power sources such as giant wind and solar farms located thousands of miles from metropolitan users. Distributed generation and local power storage at consumer and manufacturing sites must be designed and tested to further fortify Grid stability and safety from terrorism, as well as better defend it from the usual weather and mechanical outages.

Columbia feels it is imperative that the development of the new Smart Grid system be a top National priority and that it be open to continual innovation unlike the current electricity system with its limited Research and Development budgets.

Relevant Lectures:

"Our Energy Challenge"
September 23, 2003, 7:30 p.m. in the Low Library Rotunda, Columbia University
Nobel Laureate Richard E. Smalley, Rice University

"Shocked by the Dark"
October 30, time tbd, Davis Auditorium, Columbia University
Dr. Roger N. Anderson, Columbia University

The Lamont-Doherty Earth Observatory, a member of The Earth Institute at Columbia University, is one of the world’s leading research centers examining the planet from its core to its atmosphere, across every continent and every ocean. From global climate change to earthquakes, volcanoes, environmental hazards and beyond, Observatory scientists provide the basic knowledge of Earth systems needed to inform the future health and habitability of our planet. For more information, visit http://www.ldeo.columbia.edu.

The Earth Institute at Columbia University is the world’s leading academic center for the integrated study of Earth, its environment, and society. The Earth Institute builds upon excellence in the core disciplines-Earth sciences, biological sciences, engineering sciences, social sciences and health sciences-and stresses cross-disciplinary approaches to complex problems. Through its research training and global partnerships, it mobilizes science and technology to advance sustainable development, while placing special emphasis on the needs of the world’s poor. For more information please see http://www.earth.columbia.edu.

Mary Tobin | EurekAlert!
Further information:
http://www.ldeo.columbia.edu/
http://www.earth.columbia.edu

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>