Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart electric grid of the future is in development

24.09.2003


Plans are underway to test new system



The nations current electric grid system will not work in the future with solar and wind farms providing substantial but intermittent power over long distances.

By 2050, it will take between 15 and 20 Terawatts (TW) of electric power to supply the North American economy. A little under 7 TW is currently used, with most of that consumed in the United States. The "Smart Electric Grid of the Future" must be able to efficiently and securely deliver this two- to three-fold-increase in power to all corners of the continent, in addition to being invulnerable to security breaches, attacks, natural disasters, and mechanical failures. The country can ill afford more blackouts like August 14, 2003.


Researchers at Columbia University have assembled a national team of scientists, technologists, security and intelligence experts to spearhead development of this "Smart Electric Grid"-a lean and efficient electrical delivery system that can meet the future energy and security demands of the nation.

Dr. Roger N. Anderson and Albert Boulanger from the Lamont-Doherty Earth Observatory, a member of The Earth Institute at Columbia University, along with colleagues from Rice University’s Center for Nano Scale Science & Technology, the Texas Energy Center, and the Texas Superconductivity Center, have developed the framework for a "Smart Electric Grid," and plans are underway to test their system in Texas as well as the Northeast.

"We plan to integrate new technologies with the public policies, economic incentives and regulation changes that will be required to produce the new electric power system. The plan calls for a National Test Bed to put designs and innovations to practical use. A smarter and more capable system is essential to the future of economic growth and vitality for all of North America, and we intend to build the demonstration projects that will show the way to the future grid" said Anderson.

The technologies that the Columbia Team are working on will smartly control the complex system associated with the continent’s vast electrical power grid, which must interconnect 200 million asynchronous house, block, community, business, industry, town, and regional generation, transmission, distribution and storage systems.

In the immediate future, vast new renewable energy sources from wind, solar, and geothermal power generation must be added to gas, coal, hydroelectric and nuclear sources of the present. The new "Smart Electric Grid" must improve efficiency by 50% or more in order for this power technology revolution to be affordable.

In addition, it must be far more sophisticated from a computerized control standpoint in order to deal with unpredictable and time-varying green power sources such as giant wind and solar farms located thousands of miles from metropolitan users. Distributed generation and local power storage at consumer and manufacturing sites must be designed and tested to further fortify Grid stability and safety from terrorism, as well as better defend it from the usual weather and mechanical outages.

Columbia feels it is imperative that the development of the new Smart Grid system be a top National priority and that it be open to continual innovation unlike the current electricity system with its limited Research and Development budgets.

Relevant Lectures:

"Our Energy Challenge"
September 23, 2003, 7:30 p.m. in the Low Library Rotunda, Columbia University
Nobel Laureate Richard E. Smalley, Rice University

"Shocked by the Dark"
October 30, time tbd, Davis Auditorium, Columbia University
Dr. Roger N. Anderson, Columbia University

The Lamont-Doherty Earth Observatory, a member of The Earth Institute at Columbia University, is one of the world’s leading research centers examining the planet from its core to its atmosphere, across every continent and every ocean. From global climate change to earthquakes, volcanoes, environmental hazards and beyond, Observatory scientists provide the basic knowledge of Earth systems needed to inform the future health and habitability of our planet. For more information, visit http://www.ldeo.columbia.edu.

The Earth Institute at Columbia University is the world’s leading academic center for the integrated study of Earth, its environment, and society. The Earth Institute builds upon excellence in the core disciplines-Earth sciences, biological sciences, engineering sciences, social sciences and health sciences-and stresses cross-disciplinary approaches to complex problems. Through its research training and global partnerships, it mobilizes science and technology to advance sustainable development, while placing special emphasis on the needs of the world’s poor. For more information please see http://www.earth.columbia.edu.

Mary Tobin | EurekAlert!
Further information:
http://www.ldeo.columbia.edu/
http://www.earth.columbia.edu

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>