Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Everyone Knows It's Windy . . .

18.06.2012
And now they have the data to prove it. The middle of Lake Michigan is a vast, untapped reservoir of wind energy. The next step will be to find out if it can be harvested economically without harming the environment.

The data come from a six-ton buoy that was deployed at three locations in the lake: two points near the Muskegon shoreline and about 35 miles off shore. Loaded with scientific equipment, it has provided the first direct measurement of wind over the Great Lakes at the height of commercial turbines.

The project was led by Grand Valley State University’s Michigan Alternative and Renewable Energy Center and funded primarily by the US Department of Energy and the Michigan Public Service Commission.

To analyze the data streaming from the buoy, the Grand Valley State researchers called upon Guy Meadows, formerly of the University of Michigan and now the director of Great Lakes initiatives at Michigan Technological University.

“We’ve been carrying on that analysis at the Michigan Tech Research Institute,” Meadows said. “It’s very complex.”

Indeed. The buoy shoots three laser beams up into the air that sense wind speed and direction. They take measurements 1,000 times a second at six elevations, from 20 meters to 175 meters above the water. The data are averaged at one-second intervals and stored on the buoy. Then every 10 minutes, it sends a report out via a cell or satellite connection.

The buoy is solar and wind powered and has a backup diesel generator. It can run fully automated for almost a year.

“This is really quite an instrument,” Meadows said, and the results have been “very interesting.”

“In particular, winds measured close to the shoreline were very turbulent, because of the presence of land. But the farther the buoy was from shore, the more the fluctuations were reduced.”

That’s important for wind generation, because the less turbulence, the more efficient the wind turbine and the less stress placed on its support structure. But that doesn’t necessarily mean new wind farms will sprout up tomorrow.

“The Great Lakes in general are very wind rich, second only to the Pacific Northwest,” Meadows said. “The question is, how do you capture that energy in an environmentally conscious way? And from an engineering standpoint, how do design equipment that will capture it and survive our most severe weather? These are big challenges.”

The next phase of this research aims to answer those questions. Michigan Tech and Grand Valley State are seeking funding from the US Department of Energy for the initial engineering and design of floating turbine technology. Energetx Composites LLC, a wind turbine blade manufacturer based in southwestern Michigan, is among the partners in the project.

The idea is to design wind turbines and advanced floating platforms that could be installed miles out in the lake, a location that offers two advantages: it’s so far from shore that it should have little or no environmental impact on the coastal zone, and the wind out there is wonderful for power generation.

“We want to know, ‘Does it make sense to harvest this from all perspectives?’” Meadows said. “Michigan Tech’s role will be as provider of unbiased data.”

Whatever the outcome, the scientific implications go well beyond evaluating the feasibility of commercial wind development.

“The Great Lakes behave just as the oceans do, but with one major difference: we drink the water,” Meadows said. “The buoy gives us a tremendous ability to forecast winds and weather, which means we would be much better at telling cities when they need to shut down water intakes because of pollutants.”

And with better wind measurements also come better wave and current prediction, important for navigating not just Lake Michigan, but all the Great Lakes.

“This has been so successful that Michigan Tech is leading an effort to acquire a second buoy for Lake Superior,” Meadows said. If anything, the results should be even more promising than in Lake Michigan, he added. “Throughout the Great Lakes the wind speed increases as we move farther north.”

Guy Meadows, gmeadows@mtu.edu
Marcia Goodrich, writer, mlgoodri@mtu.edu, 906-487-2343

Marcia Goodrich | Newswise Science News
Further information:
http://www.mtu.edu

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>