Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Everyone Knows It's Windy . . .

18.06.2012
And now they have the data to prove it. The middle of Lake Michigan is a vast, untapped reservoir of wind energy. The next step will be to find out if it can be harvested economically without harming the environment.

The data come from a six-ton buoy that was deployed at three locations in the lake: two points near the Muskegon shoreline and about 35 miles off shore. Loaded with scientific equipment, it has provided the first direct measurement of wind over the Great Lakes at the height of commercial turbines.

The project was led by Grand Valley State University’s Michigan Alternative and Renewable Energy Center and funded primarily by the US Department of Energy and the Michigan Public Service Commission.

To analyze the data streaming from the buoy, the Grand Valley State researchers called upon Guy Meadows, formerly of the University of Michigan and now the director of Great Lakes initiatives at Michigan Technological University.

“We’ve been carrying on that analysis at the Michigan Tech Research Institute,” Meadows said. “It’s very complex.”

Indeed. The buoy shoots three laser beams up into the air that sense wind speed and direction. They take measurements 1,000 times a second at six elevations, from 20 meters to 175 meters above the water. The data are averaged at one-second intervals and stored on the buoy. Then every 10 minutes, it sends a report out via a cell or satellite connection.

The buoy is solar and wind powered and has a backup diesel generator. It can run fully automated for almost a year.

“This is really quite an instrument,” Meadows said, and the results have been “very interesting.”

“In particular, winds measured close to the shoreline were very turbulent, because of the presence of land. But the farther the buoy was from shore, the more the fluctuations were reduced.”

That’s important for wind generation, because the less turbulence, the more efficient the wind turbine and the less stress placed on its support structure. But that doesn’t necessarily mean new wind farms will sprout up tomorrow.

“The Great Lakes in general are very wind rich, second only to the Pacific Northwest,” Meadows said. “The question is, how do you capture that energy in an environmentally conscious way? And from an engineering standpoint, how do design equipment that will capture it and survive our most severe weather? These are big challenges.”

The next phase of this research aims to answer those questions. Michigan Tech and Grand Valley State are seeking funding from the US Department of Energy for the initial engineering and design of floating turbine technology. Energetx Composites LLC, a wind turbine blade manufacturer based in southwestern Michigan, is among the partners in the project.

The idea is to design wind turbines and advanced floating platforms that could be installed miles out in the lake, a location that offers two advantages: it’s so far from shore that it should have little or no environmental impact on the coastal zone, and the wind out there is wonderful for power generation.

“We want to know, ‘Does it make sense to harvest this from all perspectives?’” Meadows said. “Michigan Tech’s role will be as provider of unbiased data.”

Whatever the outcome, the scientific implications go well beyond evaluating the feasibility of commercial wind development.

“The Great Lakes behave just as the oceans do, but with one major difference: we drink the water,” Meadows said. “The buoy gives us a tremendous ability to forecast winds and weather, which means we would be much better at telling cities when they need to shut down water intakes because of pollutants.”

And with better wind measurements also come better wave and current prediction, important for navigating not just Lake Michigan, but all the Great Lakes.

“This has been so successful that Michigan Tech is leading an effort to acquire a second buoy for Lake Superior,” Meadows said. If anything, the results should be even more promising than in Lake Michigan, he added. “Throughout the Great Lakes the wind speed increases as we move farther north.”

Guy Meadows, gmeadows@mtu.edu
Marcia Goodrich, writer, mlgoodri@mtu.edu, 906-487-2343

Marcia Goodrich | Newswise Science News
Further information:
http://www.mtu.edu

More articles from Power and Electrical Engineering:

nachricht Organic-inorganic heterostructures with programmable electronic properties
30.03.2017 | Technische Universität Dresden

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>