Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough “Interface Tuning” is Macro Step for Microelectronics

13.06.2003


The ability to make atomic-level changes in the functional components of semiconductor switches, demonstrated by a team of Oak Ridge National Laboratory, North Carolina State University and University of Tennessee physicists, could lead to huge changes in the semiconductor industry. The results are reported in the June 13 issue of Science.


This image illustrates the concept of “Coulomb buffer,” the region between oxide (above) and silicon (below) in nanoswitches, that can be “tuned” through atomic-level manipulation for desirable semiconductor characteristics, an advance that benefits both researchers and manufacturers.



Semiconductor devices, the building blocks of computing chips that control everything from coffee makers to Mars landings, depend on microscopic solid-state transistors, tiny electronic on-off switches made of layers of metals, oxides and silicon. These switches stop and start the flow of electrons, and work themselves because of the microscopic interface between the oxide layer and the silicon layer, in the realm of individual atoms, where minute positive and negative charges determine semiconductor success or failure.

Until now, researchers – and the multibillion-dollar semiconductor industries they support – had to accept the limitations that each crucial interface contains.


But researchers at Oak Ridge, NC State and Tennessee have successfully learned to “tune” the atomic-level zone between substances, in a development that they call “a unifying concept for understanding and designing” this aspect of semiconductor physics. According to Dr. Rodney McKee at Oak Ridge, the concept arose from “a reformulation of the classic Schottky Barrier problem that will impact everything in semiconductor technology from laser diodes to field-effect transistors in high-speed logic.”

The U.S. Department of Energy’s Office of Science funded the team’s research. The Oak Ridge National Laboratory is a Department of Energy facility.

The atomic tuning, described in the paper “The Interface Phase and the Schottky Barrier for a Crystalline Dielectric on Silicon,” takes place in what Dr. Marco Buongiorno Nardelli, assistant professor of physics at NC State and one of the authors of the paper, has named the “Coulomb buffer.” Here, at the boundary between silicon and oxide, there is an interface phase that is neither silicon nor oxide but its own hybrid structure.

Buongiorno Nardelli, studying this interface phase at the atomic level using high-performance computer simulations, found that the fundamental basis for this tuning was in increasing or decreasing the electronic “dipole charge” – the microscopic arrangement of positive and negative charges at the interface.

The physicists’ sophisticated experiments demonstrated that the Schottky barrier – the boundary at the edge of a substance where electrons are confined, long considered an inflexible limitation – can in fact be manipulated, and that “barrier height” is, in Buongiorno Nardelli’s words, “no longer a problem, but an opportunity.”

According to the NC State physicist, who holds a joint appointment at Oak Ridge National Laboratory, the team’s work will “change common beliefs” in the field of semiconductor physics, and could open the way for smaller, faster and smarter computers.

And manufacturers, able to tune the atomic dipoles in the Coulomb buffer for specific electronic characteristics, may find that this discovery deep in the micro-regions enables macro-steps forward in efficiency and productivity.

Mick Kulikowski | NC State University
Further information:
http://www.ncsu.edu/news/press_releases/03_06/166.htm

More articles from Power and Electrical Engineering:

nachricht Researchers take next step toward fusion energy
16.11.2017 | Texas A&M University

nachricht Desert solar to fuel centuries of air travel
16.11.2017 | SolarPACES

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>