Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny atomic battery developed at Cornell could run for decades unattended, powering sensors or machines

18.10.2002


The prototype device uses a copper cantilever 2 centimeters long. Future nanofabricated versions could be smaller than one cubic millimeter.
Copyright © Cornell University


Beta particles (electrons) released from a thin film of radioactive material are absorbed by the cantilever, giving it a negative charge. The cantilever is pulled down toward the positively charged film until it is near enough for a current to flow and equalize the charge. The cantilever springs back up, and the process repeats.
Copyright © Cornell University


While electronic circuits and nanomachines grow ever smaller, batteries to power them remain huge by comparison, as well as short-lived. But now Cornell University researchers have built a microscopic device that could supply power for decades to remote sensors or implantable medical devices by drawing energy from a radioactive isotope.

The device converts the energy stored in the radioactive material directly into motion. It could directly move the parts of a tiny machine or could generate electricity in a form more useful for many circuits than has been possible with earlier devices. This new approach creates a high-impedance source (the factor that determines the amplitude of the current) better suited to power many types of circuits, says Amil Lal, Cornell assistant professor of electrical and computer engineering.

Lal and Cornell doctoral candidate Hui Li described a prototype of the device at a U.S. Department of Defense meeting of Defense Advanced Research Projects Agency (DARPA) investigators in Detroit in August. The prototype is the first MEMS (micro-electromechanical systems) version of a larger device that Lal designed and built while a member of the faculty at the University of Wisconsin, Madison, working with nuclear engineering professors James Blanchard and Douglas Henderson.



The prototype is made up of a copper strip 1 millimeter wide, 2 centimeters long and 60 micrometers (millionths of a meter) thick that is cantilevered above a thin film of radioactive nickel-63 (an isotope of nickel with a different number of neutrons from the common form). As the isotope decays, it emits beta particles (electrons). Radioactive materials can emit beta particles, alpha particles or gamma rays, the last two of which can carry enough energy to be hazardous. Lal has chosen only isotopes that emit beta particles, whose energy is small enough not to penetrate skin, to be used in his device.

The emitted electrons collect on the copper strip, building a negative charge, while the isotope film, losing electrons, becomes positively charged. The attraction between positive and negative bends the rod down. When the rod gets close enough to the isotope, a current flows, equalizing the charge. The rod springs up, and the process repeats. The principle is much like that underlying an electric doorbell, in which a moving bar alternately makes and breaks the electric circuit supplying an electromagnet that moves the bar.

Radioactive isotopes can continue to release energy over periods ranging from weeks to decades. The half-life of nickel-63, for example, is over 100 years, and Lal says a battery using this isotope might continue to supply useful energy for at least half that time. (The half-life is the time it takes for half the atoms in an element to decay.) Other isotopes offer varying combinations of energy level versus lifetime. And unlike chemical batteries, the devices will work in a very wide range of temperatures. Possible applications include sensors to monitor the condition of missiles stored in sealed containers, battlefield sensors that must be concealed and left unattended for long periods, and medical devices implanted inside the body.

The moving cantilever can directly actuate a linear device or can move a cam or ratcheted wheel to produce rotary motion. A magnetized material attached to the rod can generate electricity as it moves through a coil. Lal also has built versions of the device in which the cantilever is made of a piezoelectric material that generates electricity when deformed, releasing a pulse of current as the rod snaps up. This also generates a radio-frequency pulse that could be used to transmit information. Alternatively, Lal suggests, the electrical pulse could drive a light-emitting diode to generate an optical signal.

In addition to powering other devices, the tiny cantilevers could be used as stand-alone sensors, Lal says. The devices ordinarily operate in a vacuum. But the sensors might be developed to detect the presence or absence of particular gases, since introducing a gas to the device changes the flow of current between the rod and the base, in turn changing the period or amplitude of the oscillation. Temperature and pressure changes also can be detected.

Lal, Li and Cornell doctoral candidate Hang Guo are now building and testing practical sensors and power supplies based on the concept. The prototype shown in August was gigantic by comparison with the latest versions, Lal says. An entire device, including a vacuum enclosure, could be made to fit in less than one cubic millimeter, he says.

Bill Steele | EurekAlert!
Further information:
http://www.news.cornell.edu/

More articles from Power and Electrical Engineering:

nachricht Batteries with better performance and improved safety
23.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Researchers take next step toward fusion energy
16.11.2017 | Texas A&M University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Water cooling for the Earth's crust

23.11.2017 | Earth Sciences

Nano-watch has steady hands

23.11.2017 | Physics and Astronomy

Batteries with better performance and improved safety

23.11.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>