Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electricity from the exhaust pipe

04.06.2008
Researchers are working on a thermoelectric generator that converts the heat from car exhaust fumes into electricity. The module feeds the energy into the car’s electronic systems. This cuts fuel consumption and helps reduce the CO2 emissions from motor vehicles.

In an age of dwindling natural resources, energy-saving is the order of the day. However, many technical processes use less than one-third of the energy they employ. This is particularly true of automobiles, where two-thirds of the fuel is emitted unused in the form of heat.

About 30 percent is lost through the engine block, and a further 30 to 35 percent as exhaust fumes. Scientists all over the world are developing ways of harnessing the unused waste heat from cars, machines and power stations, in order to lower their fuel consumption.

There is clearly a great need for thermoelectric generators, or TEGs for short. These devices convert heat into electrical energy by making use of a temperature gradient. The greater the temperature difference, the more current TEGs can produce. Researchers at the Fraunhofer Institute for Physical Measurement Techniques IPM are developing thermoelectric materials, modules and systems to harness the residual heat in automobiles.

“The temperatures in the exhaust pipe can reach 700 degrees Celsius or more,” says Dr. Harald Böttner, head of the Thermoelectric Systems department. “The temperature difference between the exhaust pipe and a pipe carrying engine cooling fluid can thus be several hundred degrees Celsius.” The thermoelectric converter makes use of this huge differential: Driven by the flow of heat between the hot exhaust fumes and the cold side of a coolant pipe, the charge carriers pass through special semiconductors, thus producing an electric current similar to a batterie.

The long-term objective is to make the alternator superfluous and to supply energy to the constantly rising number of power consumers in the car. TEGs could cover a significant proportion of a car’s power requirements: “This would make it possible to cut gas consumption by between five and seven percent,” says Böttner.

A simple calculation will illustrate how important it is to increase the energy efficiency of cars: There are about 50 million licensed motor vehicles in Germany, each of which is – as a basis for an estimation – on the road for an average of 200 hours a year.

If their waste heat was utilized by TEGs during that time, with an output of one kilowatt sufficient to power parts of vehicle electronics, this would add up to ten terawatt hours of energy per annum – a significant contribution. The researchers are still in the experimentation phase at present, but they plan to build the first prototypes very soon.

Press Office | alfa
Further information:
http://www.fraunhofer.de/EN

More articles from Power and Electrical Engineering:

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>