Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the Energy Trail: Berkeley Researchers Find New Details Following the Path of Solar Energy During Photosynthesis

29.04.2008
Imagine a technology that would not only provide a green and renewable source of electrical energy, but could also help scrub the atmosphere of excessive carbon dioxide resulting from the burning of fossil fuels.
That’s the promise of artificial versions of photosynthesis, the process by which green plants have been converting solar energy into electrochemical energy for millions of years. To get there, however, scientists need a far better understanding of how Nature does it, starting with the harvesting of sunlight and the transporting of this energy to electrochemical reaction centers.

Graham Fleming, a physical chemist who holds joint appointments with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) at Berkeley, is the leader of an ongoing effort to discover how plants are able to transfer energy through a network of pigment-protein complexes with nearly 100-percent efficiency. In previous studies, he and his research group used a laser-based technique they developed called two-dimensional electronic spectroscopy to track the flow of excitation energy through both time and space. Now, for the first time, they’ve been able to connect that flow to energy-transferring functions by providing direct experimental links between atomic and electronic structures in pigment-protein complexes.

“To fully understand how the energy-transfer system in photosynthesis works, you can’t just study the spatial landscape of these pigment-protein complexes, you also need to study the electronic energy landscape. This has been a challenge because the electronic energy landscape is not confined to a single molecule but is spread out over an entire system of molecules,” Fleming said. “Our new 2D electronic spectroscopy technique has enabled us to move beyond the imaging of structures and to start imaging functions. This makes it possible for us to examine the crucial aspects of the energy-transfer system that enable it to work the way it does.

In a paper published by the Biophysical Journal, Fleming and his group report on a study of the energy-transferring functions within the Fenna-Matthews-Olson (FMO) photosynthetic light-harvesting protein, a pigment-protein complex in green sulfur bacteria that serves as a model system because it consists of only seven well-characterized pigment molecules. The paper, entitled “Visualization of Excitonic Structure in the Fenna-Matthews-Olson Photosynthetic Complex by Polarization-Dependent Two-Dimensional Electronic Spectroscopy,” was co-authored by Elizabeth Read, along with Gabriela Schlau-Cohen, Gregory Engel, Jianzhong Wen and Robert Blankenship.

“The optical properties of bacteriochlorophyll pigments are well understood, and the spatial arrangement of the pigments in FMO is known, but this has not been enough to understand how the protein as a whole responds to light excitation,” said Read. “By polarizing the laser pulses in our 2D electronic spectroscopy set-up in specific ways, we were able to visualize the direction of electronic excitation states in the FMO complex and probe the way individual states contribute to the collective behavior of the pigment-protein complex after broadband excitation.”

Fleming has compared 2D electronic spectroscopy to the early super-heterodyne radios, where an incoming high frequency radio signal was converted by an oscillator to a lower frequency for more controllable amplification and better reception. In 2D electronic spectroscopy, a sample is sequentially flashed with light from three laser beams, delivered in femtosecond timescale bursts, while a fourth beam serves as a local oscillator to amplify and phase-match the resulting spectroscopic signals.

“By providing femtosecond temporal resolution and nanometer spatial resolution, 2D electronic spectroscopy allows us to simultaneously follow the dynamics of multiple electronic states, which makes it an especially useful tool for studying photosynthetic complexes,” Fleming said. “Because the pigment molecules within protein complexes have a fixed orientation relative to each other and each absorbs light polarized along a particular molecular axis, the use of 2D electronic spectroscopy with polarized laser pulses allows us to follow the electronic couplings and interactions (between pigments and the surrounding protein) that dictate the mechanism of energy flow. This suggests the possibility of designing future experiments that use combinations of tailored polarization sequences to separate and monitor individual energy relaxation pathways.”

In all photosynthetic systems, the conversion of light into chemical energy is driven by electronic couplings that give rise to collective excitations - called molecular or Frenkel excitons (after Russian physicist Yakov Frenkel) - which are distinct from individual pigment excitations. Energy in the form of these molecular excitons is transferred from one molecule to the next down specific energy pathways as determined by the electronic energy landscape of the complex. Polarization-selective 2D electronic spectroscopy is sensitive to molecular excitons - their energies, transition strengths, and orientations - and therefore is an ideal probe of complex functions.

“Using specialized polarization sequences that select for a particular cross-peak in a spectrum allows us to probe any one particular electronic coupling even in a system containing many interacting chromophores,” said Read. “The ability to probe specific interactions between electronic states more incisively should help us better understand the design principles of natural light-harvesting systems, which in turn should help in the design of artificial light-conversion devices.”

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Power and Electrical Engineering:

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

nachricht Positrons as a new tool for lithium ion battery research: Holes in the electrode
22.02.2017 | Technische Universität München

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>