Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon researchers urge development of low carbon electricity

29.04.2008
Low-carbon electricity to power plug-in hybrids

Carnegie Mellon University’s Constantine Samaras and Kyle Meisterling report that plug-in hybrid electric vehicles could help reduce greenhouse gas emissions that fuel global warming, but the benefits are highly dependent on how the electricity system changes in the coming decades.

In a recent article in the journal Environmental Science and Technology, the authors urge federal legislators and the electricity industry to increase the deployment of low-carbon electricity technology to power plug-in hybrid vehicles.

“Plug-in hybrids represent an opportunity to reduce oil consumption, leverage next-generation biofuels and reduce greenhouse gas emissions. The types of power plants installed in the next two decades will not only affect how much we can reduce emissions from electricity, but also from vehicles if we plan on plug-in hybrids playing a substantial role,” said Samaras, a Ph.D. candidate in Carnegie Mellon’s departments of Engineering and Public Policy (EPP) and Civil and Environmental Engineering (CEE).

“We are finding that even when the impacts from producing batteries are included, plug-in hybrids still produce slightly less greenhouse gases than hybrids that run only on gasoline. But plug-in hybrids could cut emissions in half if they are charged with electricity from low-carbon sources,” said Meisterling, a Ph.D. candidate in EPP.

Already, automakers have discussed plans to develop plug-in hybrids and California recently ruled that the auto industry must sell nearly 60,000 plug-ins statewide by 2014. With the price of gas heading beyond $4 per gallon, interest in alternative vehicles continues to grow. Samaras and Meisterling also say plug-ins may allow greater use of the limited supply of biofuels because they use a lot less gasoline than regular cars.

The researchers found that life cycle greenhouse gas emissions from plug-in hybrids are about one-third less than a traditional gasoline-powered car. They also argue that with coal-fired electricity, emissions from plug-in hybrids are still lower than traditional cars, but are higher than ordinary hybrids. The call for increased low-carbon electricity supplies comes at a time when the U.S. electricity industry plans to build 154 new coal plants in the next 24 years to replace older plants being phased out.

“The type of power plants we build today will be around for a long time. We need to begin developing policies that allow us to make big dents in oil dependence and greenhouse gas emissions,” said Samaras, the recipient of a prestigious Teresa Heinz Fellowship for Environmental Research, which she is using to analyze public policies involving plug-in hybrids and low-carbon electricity.

Additional research support for this project came from the National Science Foundation (NSF) through the Climate Decision Making Center and the Electric Power Research Institute, and from the Alfred P. Sloan Foundation through Carnegie Mellon’s Electricity Industry Center.

Chriss Swaney | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Power and Electrical Engineering:

nachricht Electrical fields drive nano-machines a 100,000 times faster than previous methods
19.01.2018 | Technische Universität München

nachricht ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records
16.01.2018 | Institut für Solarenergieforschung GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>