Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Renesas collaborates with IMEC on reconfigurable RF transceivers

22.04.2008
Renesas Technology Corp., one of the world's leading semiconductor system solutions providers for mobile, automotive and PC/AV (Audio Visual) markets, has entered into a strategic research collaboration with IMEC, Europe's leading independent research center in the field of nanoelectronics, to perform research on 45nm RF transceivers targeting Gbit/s cognitive radios.

To this end, Renesas has joined IMEC’s software-defined radio (SDR) front-end program. This research program includes reconfigurable RF solutions, high-speed/low-power analog-to-digital converters (ADCs) and new approaches to digitize future RF architectures.

Researchers from Renesas will reside at IMEC to closely collaborate with IMEC’s research team. In this way, they will build a fundamental understanding and develop robust solutions for Renesas future mobile electronics products.

On the near term, IMEC’s SDR-front-end program targets the development of a new generation cost-, performance- and power-competitive reconfigurable radio in 45nm digital CMOS technology. This radio will have a programmable center frequency from 100MHz to 6GHz and programmable bandwidth from 100kHz to 40MHz covering all key communication standards, with a merit comparable to state-of-the-art single mode transceivers.

The research program builds on IMEC’s previous groundbreaking 130nm RF transceiver results (published at ISSCC 2007), namely the world’s first prototype of a true SDR transceiver IC (SCALDIO). Also, further evolutions of IMEC’s record breaking ADCs (merit record by IMEC at ISSCC 2008 of 40Msamples/s, 9 bit, 54fJ/conversion step) will be developed within this collaboration.

"We are excited that one of the world’s leading semiconductor companies has joined our SDR-front-end program. This proves the importance of our recent results on SDR and ADCs, and reflects the value IMEC brings to its industry partners in this RF research program;" said Rudy Lauwereins, Vice President Nomadic Embedded Systems at IMEC. "We are looking forward to a close cooperation with the Renesas research team, to develop together our upcoming generation of breakthrough RF designs.

"The ability to develop an innovative RF architecture with scaled-down CMOS technology and circuit technologies in transceiver products supporting next-generation cellular standards such as 3GPP-LTE and 4G’s is one of the key differentiators for our products that are superior in cost advantages, performance and power," said Masao Nakaya, board director and executive general manager of LSI product technology unit at Renesas Technology Corp.

"We are pleased to be a part of IMEC’s SDR-front-end program, collaborating on the research to explore new technologies for multi-standard RF transceivers. We aim to contribute to the early realization of next generation mobile phones by combining our advanced semiconductor solutions with IMEC’s R&D expertise in RF technology."

Katrien Marent | alfa
Further information:
http://www.imec.be
http://www.imec.be/wwwinter/mediacenter/en/Renesas_2008.shtml

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>