Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Substantial improvement in essential cheap solar cell process

20.03.2008
A cheap alternative to silicon solar cells can be found in dye-sensitised solar cells. This type of cell imitates the natural conversion of sunlight into energy by, for instance, plants and light-sensitive bacteria. Annemarie Huijser has succeeded in substantially improving a process in this type of solar cell, which is similar to Grätzel cells. Huijser will receive her PhD on this subject from TU Delft on Tuesday 25 March.

The use of solar cells is increasing very slowly. One of the reasons is that the most commonly used type, made from silicon, is quite expensive to manufacture. That is why there has been a great deal of research into alternative solar cells over the past few years.

In searching for solutions, scientists are inspired by nature. Plants are able to transport absorbed solar energy over long distances, typically about 15-20 nanometres, to a location in which it is converted into chemical energy. This is because the chlorophyll molecules in their leaves are arranged in the best possible sequence. During her PhD, Annemarie Huijser attempted a partial recreation in solar cells of this process as found in plants.

She focused on what are known as dye-sensitised solar cells. These comprise a semiconductor, such as titanium dioxide, covered with a layer of dye. The dye absorbs energy from sunlight, which creates what are known as excitons. These energy parcels then need to move towards to the semiconductor. Once there, they generate electric power.

Lego
Huijser: “You can compare dye molecules to Lego bricks. I vary the way the bricks are stacked and observe how this influences the exciton transport through the solar cells. Excitons need to move as freely as possible through the solar cells in order to generate electricity efficiently.”
By studying the best sequence of dye molecules, Huijser succeeded in increasing the average distance which the excitons move in the solar cell by twenty times up to a distance of approximately 20 nanometres, comparable to systems found in nature. This substantially increases the efficiency of the cells.

In order to make this new type of solar cell commercially viable, Huijser estimates that the mobility of the excitons needs to increase further by a factor of three. She believes that this is certainly possible. ‘Once that has been achieved, there is nothing to stop this type of solar cell being developed further.’

Grätzel cells
The solar cells used by Huijser are closely related to the more widely known Grätzel cells. In the case of Grätzel cells, however, the dye and semiconductor are very close to each other, they are almost blended. As a result, the excitons do not need to move that far. One disadvantage of this type of cell, however, is the complicated method of charge transport. For this reason, Huijser chose to adopt a different approach and use this simple dual-layer system of dye and semiconductor.

Maarten van der Sanden | alfa
Further information:
http://www.tudelft.nl

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>