Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Coal gasification -- myths, challenges and opportunities

PNNL uses technology to advance the understanding of clean coal

There is a growing consensus that increased demand for electricity will cement coal’s place in the energy portfolio for years to come. In fact, more than half of the electricity produced in the United States comes from coal. With demand for electricity expected to double by 2050 and renewable resources still years away from offsetting increased demand, it is clear -- coal is here to stay.

But can ‘dirty’ coal be used cleanly" The answer may be a resounding yes if gasification becomes common place, researchers said today at the 2008 Annual Meeting of the American Association for the Advancement of Science (AAAS) in Boston.

“Coal gasification offers one of the most versatile and clean ways to convert coal into electricity, hydrogen and other valuable energy products,” said George Muntean, staff scientist at the Department of Energy’s Pacific Northwest National Laboratory, during his presentation at the AAAS symposium entitled “Coal Gasification, Myths, Challenges and Opportunities.”

PNNL scientists organized the symposium to provide an overview of how coal gasification can help meet the growing demand for clean energy.

“Gasification provides significant economic and environmental benefits to conventional coal power plants,” Muntean said. Rather than burning coal directly, gasification breaks down coal into its basic chemical constituents using high temperature and pressure. Because of this, carbon dioxide can be captured from a gas stream far more easily than from the smokestacks of a conventional coal plant.

“If we plan to use our domestic supply of coal to produce energy, and do so in a way that does not intensify atmospheric CO2 concentrations, gasification is critical," Muntean said. "It has the potential to enable carbon capture and sequestration technologies and play an important role in securing domestic sources of transportation fuels.”

Many experts predict that coal gasification will be at the heart of clean coal technology if current lifespan and economic challenges are addressed. One significant challenge is the historically short lifespan of refractories, which are used to line and protect the inside of a gasifier. Currently, refractories have a lifespan of 12 to 16 months. The relining of a gasifier costs approximately $1 million and requires three to six weeks of downtime.

“Gasification happens in an extreme environment so the lifespan of refractories is historically low,” said S.K. Sundaram, PNNL staff scientist. “Refractory lifespan must be increased before we can realize the promise of clean coal.”

During the symposium, S.K Sundaram highlighted two advanced gasifier models developed at PNNL that provide a scientific understanding on when and why refractories fail at such high rates. The data collected from these models could enable advanced or alternative gasification technologies to be produced. Use of these models could extend refractory lifespans by 3 years.

“Advances in modeling will help us better understand some of the key challenges associated with coal gasification – refractory durability and lifespan,” Sundaram said. “This will help reduce the capital costs of operating a coal gasifier.”

During the symposium, researchers at PNNL also highlighted advances in millimeter wave technology that could be used for real-time measurement of critical parameters (temperature, slag viscosity, refractory corrosion) inside a gasifier. The millimeter wave technology, developed at PNNL, has been used for a number of different applications, from airport security to custom fit clothing. Although in the early stages of development for this application, the technology shows promise to increase the efficiency and safety of coal gasifiers.

“Advances in gasification will help us meet demand for clean energy worldwide,” Sundaram said. “Science and technology are paving the way for cleaner coal for future generations.”

Christy Lambert | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>