Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coal gasification -- myths, challenges and opportunities

18.02.2008
PNNL uses technology to advance the understanding of clean coal

There is a growing consensus that increased demand for electricity will cement coal’s place in the energy portfolio for years to come. In fact, more than half of the electricity produced in the United States comes from coal. With demand for electricity expected to double by 2050 and renewable resources still years away from offsetting increased demand, it is clear -- coal is here to stay.

But can ‘dirty’ coal be used cleanly" The answer may be a resounding yes if gasification becomes common place, researchers said today at the 2008 Annual Meeting of the American Association for the Advancement of Science (AAAS) in Boston.

“Coal gasification offers one of the most versatile and clean ways to convert coal into electricity, hydrogen and other valuable energy products,” said George Muntean, staff scientist at the Department of Energy’s Pacific Northwest National Laboratory, during his presentation at the AAAS symposium entitled “Coal Gasification, Myths, Challenges and Opportunities.”

PNNL scientists organized the symposium to provide an overview of how coal gasification can help meet the growing demand for clean energy.

“Gasification provides significant economic and environmental benefits to conventional coal power plants,” Muntean said. Rather than burning coal directly, gasification breaks down coal into its basic chemical constituents using high temperature and pressure. Because of this, carbon dioxide can be captured from a gas stream far more easily than from the smokestacks of a conventional coal plant.

“If we plan to use our domestic supply of coal to produce energy, and do so in a way that does not intensify atmospheric CO2 concentrations, gasification is critical," Muntean said. "It has the potential to enable carbon capture and sequestration technologies and play an important role in securing domestic sources of transportation fuels.”

Many experts predict that coal gasification will be at the heart of clean coal technology if current lifespan and economic challenges are addressed. One significant challenge is the historically short lifespan of refractories, which are used to line and protect the inside of a gasifier. Currently, refractories have a lifespan of 12 to 16 months. The relining of a gasifier costs approximately $1 million and requires three to six weeks of downtime.

“Gasification happens in an extreme environment so the lifespan of refractories is historically low,” said S.K. Sundaram, PNNL staff scientist. “Refractory lifespan must be increased before we can realize the promise of clean coal.”

During the symposium, S.K Sundaram highlighted two advanced gasifier models developed at PNNL that provide a scientific understanding on when and why refractories fail at such high rates. The data collected from these models could enable advanced or alternative gasification technologies to be produced. Use of these models could extend refractory lifespans by 3 years.

“Advances in modeling will help us better understand some of the key challenges associated with coal gasification – refractory durability and lifespan,” Sundaram said. “This will help reduce the capital costs of operating a coal gasifier.”

During the symposium, researchers at PNNL also highlighted advances in millimeter wave technology that could be used for real-time measurement of critical parameters (temperature, slag viscosity, refractory corrosion) inside a gasifier. The millimeter wave technology, developed at PNNL, has been used for a number of different applications, from airport security to custom fit clothing. Although in the early stages of development for this application, the technology shows promise to increase the efficiency and safety of coal gasifiers.

“Advances in gasification will help us meet demand for clean energy worldwide,” Sundaram said. “Science and technology are paving the way for cleaner coal for future generations.”

Christy Lambert | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>