Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UltraBattery sets new standard for HEVs

21.01.2008
The odometer of a low emission hybrid electric test vehicle today reached 100,000 miles as the car circled a track in the UK using the power of an advanced CSIRO battery system.

The UltraBattery combines a supercapacitor and a lead acid battery in a single unit, creating a hybrid car battery that lasts longer, costs less and is more powerful than current technologies used in hybrid electric vehicles (HEVs).

“The UltraBattery is a leap forward for low emission transport and uptake of HEVs,” said David Lamb, who leads low emissions transport research with the Energy Transformed National Research Flagship.

“Previous tests show the UltraBattery has a life cycle that is at least four times longer and produces 50 per cent more power than conventional battery systems. It’s also about 70 per cent cheaper than the batteries currently used in HEVs,” he said.

By marrying a conventional fuel-powered engine with a battery to drive an electric motor, HEVs achieve the dual environmental benefit of reducing both greenhouse gas emissions and fossil fuel consumption.

The UltraBattery also has the ability to provide and absorb charge rapidly during vehicle acceleration and braking, making it particularly suitable for HEVs, which rely on the electric motor to meet peak power needs during acceleration and can recapture energy normally wasted through braking to recharge the battery.

“The UltraBattery is a leap forward for low emission transport and uptake of HEVs,” said David Lamb, who leads low emissions transport research with the Energy Transformed National Research Flagship.Over the past 12 months, a team of drivers has put the UltraBattery to the test at the Millbrook Proving Ground in the United Kingdom, one of Europe’s leading locations for the development and demonstration of land vehicles.

“Passing the 100,000 miles mark is strong evidence of the UltraBattery's capabilities,” Mr Lamb said. “CSIRO’s ongoing research will further improve the technology’s capabilities, making it lighter, more efficient and capable of setting new performance standards for HEVs.”

The UltraBattery test program for HEV applications is the result of an international collaboration. The battery system was developed by CSIRO in Australia, built by the Furukawa Battery Company of Japan and tested in the United Kingdom through the American-based Advanced Lead-Acid Battery Consortium.

UltraBattery technology also has applications for renewable energy storage from wind and solar. CSIRO is part of a technology start-up that will develop and commercialise battery-based storage solutions for these energy sources.

National Research Flagships Flagships
CSIRO initiated the National Research Flagships to provide science-based solutions in response to Australia’s major research challenges and opportunities. The nine Flagships form multidisciplinary teams with industry and the research community to deliver impact and benefits for Australia.

Linley Davis | EurekAlert!
Further information:
http://www.csiro.au/news/UltraBattery.html

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>