Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radiation-Resistant Circuits from Mechanical Parts

13.06.2012
University of Utah engineers designed microscopic mechanical devices that withstand intense radiation and heat, so they can be used in circuits for robots and computers exposed to radiation in space, damaged nuclear power plants or nuclear attack.

The researchers showed the devices kept working despite intense ionizing radiation and heat by dipping them for two hours into the core of the University of Utah’s research reactor. They also built simple circuits with the devices.

Ionizing radiation can quickly fry electronic circuits, so heavy shielding must be used on robots such as those sent to help contain the meltdowns at the Fukushima Daiichi nuclear power plant after Japan’s catastrophic 2011 earthquake and tsunami.

“Robots were sent to control the troubled reactors, and they ceased to operate after a few hours because their electronics failed,” says Massood Tabib-Azar, a professor of electrical and computer engineering at the University of Utah and the Utah Science Technology and Research initiative.

“We have developed a unique technology that keeps on working in the presence of ionizing radiation to provide computation power for critical defense infrastructures,” he says. “Our devices also can be used in deep space applications in the presence of cosmic ionizing radiation, and can help robotics to control troubled nuclear reactors without degradation.”

The new devices are “logic gates” that perform logical operations such as “and” or “not” and are a type of device known as MEMS or micro-electro-mechanical systems. Each gate takes the place of six to 14 switches made of conventional silicon electronics.

Development of the new logic gates and their use to build circuits such as adders and multiplexers is reported in a study set for online publication this month in the journal Sensors and Actuators. The research was conducted by Tabib-Azar, University of Utah electrical engineering doctoral student Faisal Chowdhury and computer engineer Daniel Saab at Case Western Reserve University in Cleveland.

Tabib-Azar says that if he can obtain more research funding, “then the next stage would be to build a little computer” using the logic gates and circuits.

The study was funded by the Defense Advanced Research Projects Agency.

“Its premier goal is to keep us ready,” says Tabib-Azar. “If there is a nuclear event, we need to be able to have control systems, say for radars, to be working to protect the nation. There are lots of defense applications both in peacetime and wartime that require computers that can operate in the presence of ionizing radiation.”

In April, the Defense Advanced Research Projects Agency issued a call for the development of robots to deal with stricken nuclear reactors to reduce human exposure to deadly radiation. In May, NASA said it was seeking proposals for new shields or materials able to resist radiation in space. Circuits built with the new devices also could resist intense heat in engines to monitor performance, Tabib-Azar says.

MEMS: Ability to Withstand Radiation Overcomes Drawbacks

Current radiation-resistant technologies fall into two categories: conventional complementary silicon-oxide semiconductor electronics shielded with lead or other metals, and the use of different materials that inherently resist radiation.

“Electronic materials and devices by their nature require a semiconducting channel to carry current, and the channel is controlled by charges,” Tabib-Azar says. Radiation creates current inside the semiconductor channel, and “that disrupts the ability of the normal circuitry to control the current, so the signal gets lost.”

He says the MEMS logic gates are not degraded by ionizing radiation because they lack semiconducting channels. Instead, electrical charges make electrodes move to touch each other, thus acting like a switch.

MEMS have their drawbacks, which Tabib-Azar believes is why no one until now has thought to use them for radiation-resistant circuits. Silicon electronics are 1,000 times faster, much smaller, and more reliable because they have no moving parts.

But by having one MEMS device act as a logic gate, instead of using separate MEMS switches, the number of devices needed for a computer is reduced by a factor of 10 and the reliability and speed increases, Tabib-Azar says.

Also, “mechanical switches usually require large voltages for them to turn on,” Tabib-Azar says. “What we have done is come up with a technique to form very narrow gaps between the bridges in the logic gates, and that allows us to activate these devices with very small voltages, namely 1.5 volts” versus 10 or 20 volts. Unlike conventional electronics, which get hot during use, the logic gates leak much less current and run cooler, so they would last longer if battery-operated.
Design and Reactor Testing of the Logic Gates

Each logic gate measures about 25-by-25 microns, or millionths of a meter, “so you could put four of these on the cross section of a human hair,” says Tabib-Azar. Each gate is only a half-micron thick.

The logic gates each have two “bridges,” which look somewhat like two tiny microscope slides crossing each other to form a tic-tac-toe pattern, with tungsten electrodes in the center square. Each bridge is made of a glass-like silicon nitride insulator with polysilicon under it to give rigidity. The insulator is etched and covered by metallic strips of tungsten that serve as electrodes.

“When you charge them, they attract each other and they move and contact each other. Then current flows,” says Tabib-Azar.

He and his colleagues put the logic gates and conventional silicon switches to the test, showing the logic gates kept working as they were repeatedly turned on and off under extreme heat and radiation, while the silicon switches “shorted out in minutes.”

The devices were placed on a hot plate in a vacuum chamber and heated to 277 degrees Fahrenheit for an hour.
Three times, the researchers lowered the devices for two hours into the core of the university’s 90-kilowatt TRIGA research reactor, with wires extending to the control room so the researchers could monitor their operation. The logic gates did not fail.

The researchers also tested the logic gates outside the reactor and oven, running them for some two months and more than a billion cycles without failure. But to be useful, Tabib-Azar wants to improve that reliability a millionfold.

Two Kinds of Logic Gates

For the study, Tabib-Azar and colleagues built two kinds of logic gate, each with two inputs (0 or 1) and thus four possible combinations of inputs (0-0, 0-1, 1-0, 1-1). The input and output are electrical voltages:

-- An AND gate, which means “and.” If both inputs – A and B – are true (or worth 1 each), then the output is true (or equal to 1). If input A or B or both are false (worth 0), then the output is false (or equal to 0).

-- An XOR gate, which means “exclusive or.” If input A doesn’t equal B (so A is 0 and B is 1 or A is 1 and B is 0), the output is true (equal 1). If both A and B are either true (1) or false (0), the output is false (0).

“In a sense, you can say these are switches with multiple outcomes,” rather than just off-on (0-1), says Tabib-Azar. “But instead of using six [silicon] switches separately, you have one structure that gives you the same logic functionality.”

“Let’s say you want to decide whether to go to dinner tonight, and that depends on if the weather is nice, if you feel like it,” he says. “In order to make that decision, you have a bunch of ‘or’ statements and a bunch of ‘and’ statements: ‘I’ll go to dinner if the weather is nice and I feel like it.’ ‘I like to eat Italian or French.’ You put these statements together and then you can make a decision.”

“To analyze this using silicon computers,” Tabib-Azar says, “you need a bunch of on-off switches that have to turn on or off in a particular sequence to give you the output, whether you go to dinner or not. But just a single one of these [MEMS logic gate] devices

can be designed to perform this computation for you.”

Contacts:
-- Massood Tabib-Azar, professor of electrical and computer engineering –
cellular (216) 534-7670, office (801) 581-8775, azar.m@utah.edu
-- Lee Siegel, science news specialist, University of Utah Communications –
office (801) 581-8993, cellular (801) 244-5399, lee.siegel@utah.edu
University of Utah Communications
201 Presidents Circle, Room 308
Salt Lake City, Utah 84112-9017
(801) 581-6773 fax: (801) 585-3350

Lee Siegel | Newswise Science News
Further information:
http://www.unews.utah.edu

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>