Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proposed Grid Could Make Offshore Wind Power More Reliable

06.04.2010
The energy needs of the entire human population could potentially be met by converting wind energy to electricity.

While offshore wind power resources are abundant, wind turbines are currently unable to provide steady power due to natural fluctuations in wind direction and strength.

Offshore wind power output can be made more consistent by choosing project development locations that take advantage of regional weather patterns and by connecting wind power generators with a shared power line, according to a paper by researchers from the University of Delaware and Stony Brook University published in the April 5 issue of the Proceedings of the National Academy of Sciences.

“Making wind-generated electricity more steady will enable wind power to become a much larger fraction of our electric sources,” said the paper’s lead author Willett Kempton, UD professor of marine policy in the College of Earth, Ocean, and Environment and director of its Center for Carbon-free Power Integration.

The research team — which also included UD alumnus Felipe Pimenta, UD research faculty member Dana Veron, and Brian Colle, associate professor in the School of Marine and Atmospheric Sciences at Stony Brook University — demonstrated thoughtful design of offshore wind power projects can minimize the impacts of local weather on power fluctuations.

The researchers analyzed five years of wind observations from 11 monitoring stations along the U.S. East Coast from Florida to Maine. Based on wind speeds at each location, they estimated electrical power output from a hypothetical five-megawatt offshore turbine. After analyzing the patterns of wind energy among the stations along the coast, the team explored the seasonal effects on power output.

“Our analysis shows that when transmission systems will carry power from renewable sources, such as wind, they should be designed to consider large-scale meteorology, including the prevailing movement of high- and low-pressure systems,” Kempton said.

Colle explained the ideal configuration. “A north-south transmission geometry fits nicely with the storm track that shifts northward or southward along the U.S. East Coast on a weekly or seasonal time scale,” he said. “Because then at any one time a high or low pressure system is likely to be producing wind (and thus power) somewhere along the coast.”

The researchers found each hypothetical power generation site exhibited the expected ups and downs, but when they simulated a power line connecting them, the overall power output was smoothed so that maximum or minimum output was rare. In the particular five-year period studied, the power output of the simulated grid never completely stopped.

No wind turbines are presently located in U.S. waters, although projects have been proposed off the coasts of several Atlantic states. This research could prove useful as project sites are selected and developed.

Reducing the severity of wind power fluctuations would allow sufficient time for power suppliers to ramp up or down power production from other energy sources as needed. Solutions that reduce power fluctuations also are important if wind is to displace significant amounts of carbon-emitting energy sources, the researchers said.

The study was funded by the Delaware Sea Grant College Program and CAPES, a Brazilian research council.

About the University of Delaware and the College of Earth, Ocean, and Environment

The College of Earth, Ocean, and Environment (CEOE) strives to advance our understanding of Earth’s natural systems and the interactions of humans with the environment through engaged interdisciplinary research, teaching, and outreach.

The University of Delaware, the flagship institution of the state of Delaware, is one of the oldest Land Grant institutions in the nation, and one of only three institutions to also have Sea Grant and Space Grant status. The university is classified by the Carnegie Foundation for the Advancement of Teaching as a research university with very high research activity — a designation accorded fewer than 3 percent of U.S. colleges and universities. The university is a state-assisted, privately controlled institution with an enrollment of more than 16,000 undergraduates, 3,500 graduate students and 1,000 professional and continuing study students.

About the School of Marine and Atmospheric Sciences at Stony Brook University
The School of Marine and Atmospheric Sciences (SoMAS) is the State University of New York's center for marine and atmospheric research, education, and public service. With more than 85 faculty and staff and more than 500 students engaged in interdisciplinary research and education, SoMAS is at the forefront of advancing knowledge and discovering and resolving environmental challenges affecting the oceans and atmosphere on both regional and global scales.

Andrea Boyle | Newswise Science News
Further information:
http://www.udel.edu

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>