Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Perovskites provide big boost to silicon solar cells, Stanford study finds

16.01.2015

Stacking perovskites onto a conventional silicon solar cell dramatically improves the overall efficiency of the cell, according to a new study led by Stanford University scientists.

The researchers describe their novel perovskite-silicon solar cell in this week's edition of the journal Energy & Environmental Science.


This is a microscopic cross-section of a tandem solar cell made with two photovoltaic materials, perovskite and copper indium gallium diselenide, or CIGS.

Credit: Colin Bailie, Stanford University

"We've been looking for ways to make solar panels that are more efficient and lower cost," said study co-author Michael McGehee, a professor of materials science and engineering at Stanford. "Right now, silicon solar cells dominate the world market, but the power conversion efficiency of silicon photovoltaics has been stuck at 25 percent for 15 years."

One cost-effective way to improve efficiency is to build a tandem device made of silicon and another inexpensive photovoltaic material, he said.

"Making low-cost tandems is very desirable," McGehee said. "You simply put one solar cell on top of the other, and you get more efficiency than either could do by itself. From a commercial standpoint, it makes a lot of sense to use silicon for the bottom cell. Until recently, we didn't have a good material for the top cell, then pervoskites came along."

Perovskite is a crystalline material that is inexpensive and easy to produce in the lab. In 2009, scientists showed that perovskites made of lead, iodide and methylammonium could convert sunlight into electricity with an efficiency of 3.8 percent. Since then, researchers have achieved perovskite efficiencies above 20 percent, rivaling commercially available silicon solar cells and spawning widespread interest among silicon manufacturers.

"Our goal is to leverage the silicon factories that already exist around the world," said Stanford graduate student Colin Bailie, co-lead author of the study. "With tandem solar cells, you don't need a billion-dollar capital expenditure to build a new factory. Instead, you can start with a silicon module and add a layer of perovskite at relatively low cost."

Sunlight to electricity

Solar cells work by converting photons of sunlight into an electric current that moves between two electrodes. Silicon solar cells generate electricity by absorbing photons of visible and infrared light, while perovskite cells harvest only the visible part of the solar spectrum where the photons have more energy.

"Absorbing the high-energy part of the spectrum allows perovskite solar cells to generate more power per photon of visible light than silicon cells," Bailie said.

A key roadblock to building an efficient perovskite-silicon tandem has been a lack of transparency.

"Colin had to figure out how to put a transparent electrode on the top so that some photons could penetrate the perovskite layer and be absorbed by the silicon at the bottom," McGehee said. "No one had ever made a perovskite solar cell with two transparent electrodes."

Perovskites are easily damaged by heat and readily dissolve in water. This inherent instability ruled out virtually all of the conventional techniques for applying electrodes onto the perovoskite solar cell, so Bailie did it manually.

"We used a sheet of plastic with silver nanowires on it," he said. "Then we built a tool that uses pressure to transfer the nanowires onto the perovskite cell, kind of like a temporary tattoo. You just need to rub it to transfer the film."

Remarkable efficiency

For the experiment, the Stanford team stacked a perovskite solar cell with an efficiency of a 12.7 percent on top of a low-quality silicon cell with an efficiency of just 11.4 percent.

"By combining two cells with approximately the same efficiency, you can get a very large efficiency boost," Bailie said.

The results were impressive.

"We improved the 11.4 percent silicon cell to 17 percent as a tandem, a remarkable relative efficiency increase of nearly 50 percent," McGehee said. "Such a drastic improvement in efficiency has the potential to redefine the commercial viability of low-quality silicon."

In another experiment, the research team replaced the silicon solar cell with a cell made of copper indium gallium diselenide (CIGS). The researchers stacked a 12.7 percent efficiency perovskite cell onto a CIGS cell with a 17 percent efficiency. The resulting tandem achieved an overall conversion efficiency of 18.6 percent.

"Since most, if not all, of the layers in a perovskite cell can be deposited from solution, it might be possible to upgrade conventional solar cells into higher-performing tandems with little increase in cost," the authors wrote.

A big unanswered question is the long-term stability of perovskites, McGehee added.

"Silicon is a rock," he said. "You can heat it to about 600 degrees Fahrenheit shine light on it for 25 years and nothing will happen. But if you expose perovskite to water or light it likely will degrade. We have a ways to go to show that perovskite solar cells are stable enough to last 25 years. My vision is that some day we'll be able to get low-cost tandems that are 25 percent efficient. That's what companies are excited about. In five to 10 years, we could even reach 30 percent efficiency."

The study was also written by co-lead author M. Greyson Christoforo, Andrea Bowring, Eva Unger, William Nguyen and Alberto Salleo from Stanford; Jonathan Mailoa, Jungwoo Lee and Tonio Buonassisi from the Massachusetts Institute of Technology; Julian Burschka, Norman Pellet and Michael Graetzel from the Swiss École Polytechnique Fédérale de Lausanne; and Rommel Noufi, formerly with the U.S. National Renewable Energy Laboratory.

This article was written by Mark Shwartz, Precourt Institute for Energy at Stanford University.

Media Contact

Mark Shwartz
mshwartz@stanford.edu
650-723-9296

 @stanford

http://news.stanford.edu/ 

Mark Shwartz | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>