Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL microscopy captures real-time view of evolving fuel cell catalysts

20.11.2015

Atomic-level imaging of catalysts by scientists at the Department of Energy's Oak Ridge National Laboratory could help manufacturers lower the cost and improve the performance of emission-free fuel cell technologies.

Fuel cells rely on costly platinum catalysts to enable the reactions that convert chemical energy into electricity. Alloying platinum with noble metals such as cobalt reduces the overall cost, but such alloyed catalysts vary in performance based on their atomic structure and processing history.


Models of platinum-cobalt nanoparticle catalysts illustrate how specific atomic configurations originate and evolve as the particles are heated.

Illustration by Andy Sproles, Oak Ridge National Laboratory, US Department of Energy.

An ORNL team used scanning transmission electron microscopy to track atomic reconfigurations in individual platinum-cobalt nanoparticle catalysts as the particles were heated inside the microscope. The in-situ measurements -- acquired in real time in the vacuum of the microscope column -- allowed the researchers to collect atomic level data that could not be obtained with conventional microscopy techniques. The results are published in Nature Communications.

"This is the first time individual nanoparticles have been tracked this way -- to image the structural and compositional changes at the atomic level from the start of an annealing process to the finish," ORNL coauthor Karren More said.

Very small changes in the positions of platinum and cobalt atoms affect the catalyst's overall activity and selectivity, so annealing -- a gradual heating, holding, and cooling process -- is often used to modify the alloy's surface structure. The ORNL in situ microscopy experiments documented exactly what, when and how specific atomic configurations originate and evolve during the annealing process.

"You can anneal something from room temperature to 800 degrees Celsius, but you don't know at which point you should stop the process to ensure the best catalytic performance," lead author Miaofang Chi said. "Because you don't know how the particle evolves, you might be missing the optimum surface configuration."

The atomic-level detail in the ORNL study will guide researchers and manufacturers who want to fine-tune their catalysts' atomic structure to meet the demands of a specific application.

"This work paves the way towards designing catalysts through post-synthesis annealing for optimized performance," Chi said.

###

The study is published as "Surface faceting and elemental diffusion behavior at atomic scale for alloy nanoparticles during in situ annealing." Coauthors are ORNL's Miaofang Chi, Karren More, Andrew Lupini and Lawrence Allard; Johns Hopkins University's Chao Wang; University of Pittsburgh's Yinkai Lei and Guofeng Wang; and Argonne National Laboratory's Dongguo Li, Nenad Markovic, and Vojislav Stamenkovic.

The research was sponsored by the Fuel Cell Technologies Office in DOE's Office of Energy Efficiency and Renewable Energy, and microscopy was performed at ORNL's Center for Nanophase Materials Sciences, a DOE Office of Science User Facility.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Image: https://www.ornl.gov//sites/default/files/annealingIllust_1.jpeg

Caption: Models of platinum-cobalt nanoparticle catalysts illustrate how specific atomic configurations originate and evolve as the particles are heated. Illustration by Andy Sproles, Oak Ridge National Laboratory, U.S. Department of Energy.

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news. Additional information about ORNL is available at the sites below:
Twitter - http://twitter.com/ornl
RSS Feeds - http://www.ornl.gov/ornlhome/rss_feeds.shtml
Flickr - http://www.flickr.com/photos/oakridgelab
YouTube - http://www.youtube.com/user/OakRidgeNationalLab
LinkedIn - http://www.linkedin.com/companies/oak-ridge-national-laboratory
Facebook - http://www.facebook.com/Oak.Ridge.National.Laboratory

Media Contact

Morgan McCorkle
mccorkleml@ornl.gov
865-574-7308

 @ORNL

http://www.ornl.gov 

Morgan McCorkle | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

“Pregnant” Housefly Males Demonstrate the Evolution of Sex Determination

23.05.2017 | Life Sciences

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>