Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NREL Reports 31.1% Efficiency for III-V Solar Cell

26.06.2013
Conversion-efficiency mark is a world record for a two-junction solar cell measured under one-sun illumination
The Energy Department’s National Renewable Energy Lab has announced a world record of 31.1% conversion efficiency for a two-junction solar cell under one sun of illumination.

NREL Scientist Myles Steiner announced the new record June 19 at the 39th IEEE Photovoltaic Specialists Conference in Tampa, Fla. The previous record of 30.8% efficiency was held by Alta Devices.

The tandem cell was made of a gallium indium phosphide cell atop a gallium arsenide cell, has an area of about 0.25 square centimeters and was measured under the AM1.5 global spectrum at 1,000 W/m2. It was grown inverted, similar to the NREL-developed inverted metamorphic multi-junction (IMM) solar cell – and flipped during processing. The cell was covered on the front with a bilayer anti-reflection coating, and on the back with a highly reflective gold contact layer.

The work was done at NREL as part of DOE’s Foundation Program to Advance Cell Efficiency (F-PACE), a project of the Department’s SunShot Initiative that aims to lower the cost of solar energy to a point at which it is competitive with other sources including fossil fuels.

At the beginning of the F-PACE project, which aims to produce a 48%-efficient concentrator cell, NREL’s best single-junction gallium-arsenide solar cell was 25.7% efficient. This efficiency has been improved upon by other labs over the years: Alta Devices set a series of records, increasing the gallium-arsenide record efficiency from 26.4% in 2010 to 28.8% in 2012. Alta’s then-record two-junction 30.8% efficient cell was achieved just two months ago. The new record may not last long either, but “it brings us one step closer to the 48% milestone,” said NREL Principal Scientist Sarah Kurtz, who leads the F-PACE project in NREL’s National Center for Photovoltaics. “This joint project with the University of California, Berkeley and Spectrolab has provided us the opportunity to look at these near-perfect cells in different ways. Myles Steiner, John Geisz, Iván García and the III-V multijunction PV group have implemented new approaches providing a substantial improvement over NREL's previous results.”

“Historically, scientists have bumped up the performance of multijunction cells by gradually improving the material quality and the internal electrical properties of the junctions -- and by optimizing variables such as the bandgaps and the layer thicknesses,” NREL Scientist Myles Steiner said. But internal optics plays an underappreciated role in high-quality cells that use materials from the third and fifth columns of the periodic tables – the III-V cells. “The scientific goal of this project is to understand and harness the internal optics,” he said.

When an electron-hole pair recombines, a photon can be produced, and if that photon escapes the cell, luminescence is observed – that is the mechanism by which light-emitting diodes work. In traditional single-junction gallium-arsenide cells, however, most of the photons are simply absorbed in the cell’s substrate and are lost. With a more optimal cell design, the photons can be re-absorbed within the solar cell to create new electron-hole pairs, leading to an increase in voltage and conversion efficiency. In a multijunction cell, the photons can also couple to a lower bandgap junction, generating additional current, a process known as luminescent coupling.

The NREL researchers improved the cell’s efficiency by enhancing the photon recycling in the lower, gallium-arsenide junction by using a gold back contact to reflect photons back into the cell, and by allowing a significant fraction of the luminescence from the upper, GaInP junction to couple into the GaAs junction. Both the open-circuit voltage and the short-circuit current were increased.

Silicon solar cells now dominate the world PV market, but researchers see opportunities for new materials. High-efficiency concentrator cells bolstered by lenses that magnify the power of the sun are attracting interest from utilities because the modules have demonstrated efficiencies well over 30%. And there may be commercial opportunities for one-sun or low-concentration III-V cells if growth rates can be increased and costs reduced.

The same cell should work well when lenses are added to multiply the sun’s power. “We expect to observe similar enhancements of the solar cell characteristics when measured under concentrated illumination,” Steiner said.

NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by the Alliance for Sustainable Energy, LLC.

David Glickson | EurekAlert!
Further information:
http://www.nrel.gov

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>