Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NDSU Develops Innovative Laser-Enabled Electronic Packaging Technology

25.10.2011
Small. Fast. Precise. A new electronics manufacturing technology developed at North Dakota State University, Fargo, eliminates challenges facing conventional packaging techniques and shows promise to significantly reduce the size and unit cost of microelectronic devices.

The technology, called Laser-Enabled Advanced Packaging (LEAP™), has the potential to enable high-volume handling, placement and interconnection of microelectronic components smaller than ever before possible.

LEAP™ is a comprehensive wafer-to-product electronic packaging technology for high-throughput, low-cost, contactless assembly of ultrathin semiconductor chips onto rigid and flexible substrates. The technology has been under development by the Advanced Electronics Packaging research group at the North Dakota State University Center for Nanoscale Science and Engineering (CNSE), Fargo, N. D., since 2008.

Recently the NDSU researchers successfully implemented the LEAP™ technology to fabricate the first-ever functional electronic device with a laser-assembled, ultra-thin silicon chip embedded in a flexible substrate. The research group is led by Dr. Val Marinov, associate professor of manufacturing engineering; and includes Dr. Orven Swenson, associate professor of physics at NDSU; Ross Miller, research engineer apprentice; and CNSE research staff, graduate students and undergraduate research assistants.

A key part of LEAP™ is the patent-pending process, Thermo-Mechanical Selective Laser Assisted Die Transfer (tmSLADT™). This process selectively and rapidly places ultra-thin (

“The LEAP™ technology and tmSLADT™ process are important because they potentially enable a new class of inexpensive electronic devices by the high-volume placement and interconnection of various types of ultra-thin, fine pitch, active and passive circuit components,” said Aaron Reinholz, associate director for electronics technology at NDSU CNSE. “These types of components are especially of interest for flex substrate electronics, as they allow devices to bend, roll and be manipulated into complex geometries.”

Reinholz said application of the LEAP™ technology offers a new paradigm for numerous types of flexible and potentially disposable microelectronic devices, such as garment-integrated RFID tags, intelligent sensors platforms, and self-adapting conformal antennas. He added that this technology has strong potential in the near future outside of defense applications to reduce the unit cost of high volume single-chip devices such as RFID tags, smart cards, chip-and-pin bank cards and “smart” bank notes. According to CNSE researchers, the tmSLADT™ process also has potential value in microelectromechanical systems (MEMS) fabrication or other micro-assembly applications.

The LEAP™ technology is outlined in “Laser-Enabled Advanced Packaging of Ultrathin Bare Dice in Flexible Substrates” which has been accepted for publication by IEEE Transactions on Components, Packaging and Manufacturing Technology, manuscript TCPMT-2011-105. Another manuscript, “Noncontact Selective Laser-Assisted Placement of Thinned Semiconductor Dice,” is currently under peer review.

This material is based on research sponsored by the Defense Microelectronics Activity (DMEA) under agreement number H94003-11-2-1102. This press release does not necessarily reflect the position or the policy of the Government and no official endorsement should be inferred.

For more information, contact aaron.reinholz@ndsu.edu

About NDSU CNSE
NDSU’s Center for Nanoscale Science and Engineering, Fargo, conducts multidisciplinary research with partners in government, industry, private and university sectors. CNSE’s scientific capabilities include flexible electronics and materials, electronics miniaturization, wireless sensors, RFID, bioactive materials, combinatorial science, and coatings technologies. www.ndsu.edu/cnse
About NDSU
North Dakota State University, Fargo, is notably listed among the nation’s top 108 public and private universities in the Carnegie Commission on Higher Education’s elite category of “Research Universities/Very High Research Activity.” As a student-focused, land grant, research institution with more than 14,000 students, NDSU is listed in the top 40 research universities in the U.S. without a medical school, based on research expenditures reported to the National Science Foundation. At the 55-acre NDSU Research & Technology Park, faculty, staff and students work with private sector researchers on leading-edge projects. www.ndsu.edu/research

Aaron Reinholz | Newswise Science News
Further information:
http://www.ndsu.edu/research

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>