Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NDSU Develops Innovative Laser-Enabled Electronic Packaging Technology

25.10.2011
Small. Fast. Precise. A new electronics manufacturing technology developed at North Dakota State University, Fargo, eliminates challenges facing conventional packaging techniques and shows promise to significantly reduce the size and unit cost of microelectronic devices.

The technology, called Laser-Enabled Advanced Packaging (LEAP™), has the potential to enable high-volume handling, placement and interconnection of microelectronic components smaller than ever before possible.

LEAP™ is a comprehensive wafer-to-product electronic packaging technology for high-throughput, low-cost, contactless assembly of ultrathin semiconductor chips onto rigid and flexible substrates. The technology has been under development by the Advanced Electronics Packaging research group at the North Dakota State University Center for Nanoscale Science and Engineering (CNSE), Fargo, N. D., since 2008.

Recently the NDSU researchers successfully implemented the LEAP™ technology to fabricate the first-ever functional electronic device with a laser-assembled, ultra-thin silicon chip embedded in a flexible substrate. The research group is led by Dr. Val Marinov, associate professor of manufacturing engineering; and includes Dr. Orven Swenson, associate professor of physics at NDSU; Ross Miller, research engineer apprentice; and CNSE research staff, graduate students and undergraduate research assistants.

A key part of LEAP™ is the patent-pending process, Thermo-Mechanical Selective Laser Assisted Die Transfer (tmSLADT™). This process selectively and rapidly places ultra-thin (

“The LEAP™ technology and tmSLADT™ process are important because they potentially enable a new class of inexpensive electronic devices by the high-volume placement and interconnection of various types of ultra-thin, fine pitch, active and passive circuit components,” said Aaron Reinholz, associate director for electronics technology at NDSU CNSE. “These types of components are especially of interest for flex substrate electronics, as they allow devices to bend, roll and be manipulated into complex geometries.”

Reinholz said application of the LEAP™ technology offers a new paradigm for numerous types of flexible and potentially disposable microelectronic devices, such as garment-integrated RFID tags, intelligent sensors platforms, and self-adapting conformal antennas. He added that this technology has strong potential in the near future outside of defense applications to reduce the unit cost of high volume single-chip devices such as RFID tags, smart cards, chip-and-pin bank cards and “smart” bank notes. According to CNSE researchers, the tmSLADT™ process also has potential value in microelectromechanical systems (MEMS) fabrication or other micro-assembly applications.

The LEAP™ technology is outlined in “Laser-Enabled Advanced Packaging of Ultrathin Bare Dice in Flexible Substrates” which has been accepted for publication by IEEE Transactions on Components, Packaging and Manufacturing Technology, manuscript TCPMT-2011-105. Another manuscript, “Noncontact Selective Laser-Assisted Placement of Thinned Semiconductor Dice,” is currently under peer review.

This material is based on research sponsored by the Defense Microelectronics Activity (DMEA) under agreement number H94003-11-2-1102. This press release does not necessarily reflect the position or the policy of the Government and no official endorsement should be inferred.

For more information, contact aaron.reinholz@ndsu.edu

About NDSU CNSE
NDSU’s Center for Nanoscale Science and Engineering, Fargo, conducts multidisciplinary research with partners in government, industry, private and university sectors. CNSE’s scientific capabilities include flexible electronics and materials, electronics miniaturization, wireless sensors, RFID, bioactive materials, combinatorial science, and coatings technologies. www.ndsu.edu/cnse
About NDSU
North Dakota State University, Fargo, is notably listed among the nation’s top 108 public and private universities in the Carnegie Commission on Higher Education’s elite category of “Research Universities/Very High Research Activity.” As a student-focused, land grant, research institution with more than 14,000 students, NDSU is listed in the top 40 research universities in the U.S. without a medical school, based on research expenditures reported to the National Science Foundation. At the 55-acre NDSU Research & Technology Park, faculty, staff and students work with private sector researchers on leading-edge projects. www.ndsu.edu/research

Aaron Reinholz | Newswise Science News
Further information:
http://www.ndsu.edu/research

More articles from Power and Electrical Engineering:

nachricht Stretchable biofuel cells extract energy from sweat to power wearable devices
22.08.2017 | University of California - San Diego

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>