Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method to encourage virtual power plants for efficient renewable energy production

26.07.2012
Researchers from the University of Southampton have devised a novel method for forming virtual power plants to provide renewable energy production in the UK.
In the last decade, small and distributed energy resources (DERs), like wind farms and solar panels, have begun to appear in greater numbers in the electricity supply network (Grid).

To ensure that energy demand is met without interruptions, the Grid requires power suppliers to provide an estimate of their production and the confidence in meeting that estimate. Depending on the confidence placed on the estimates, the Grid is able to choose the appropriate number of conventional generators needed to produce and supply energy whenever it is needed - the more accurate the provided estimates, and the higher the confidence placed in those estimates, the better for the Grid scheduling activities.

Although the deployment of DERs could reduce reliance on conventional power plants, their integration into the Grid is problematic since the DERs, given their small size, are largely 'invisible' to the Grid. Even if visible, the uncertainty and uncontrollability of renewable energy sources prevents individual DERs from profitably dealing with the Grid directly, or participating in the wholesale electricity market because they are often unable to meet the set generation targets.

Virtual Power Plants (VPPs) are fast emerging as a suitable means of integrating DERs into the Grid. They are formed via the aggregation of a large number of such DERs, enabling them to reach similar size and supply reliability as conventional power plants.
In a new study, University of Southampton researchers promote the formation of such 'cooperative' VPPs (CVPPs) using intelligent and multi-agent software systems. In particular, they designed a payment mechanism that encourages DERs to join CVPPs with large overall production.

Dr Valentin Robu, from the University's Agents, Interaction and Complexity Research Group, who worked on the study says: "There is considerable talk about how to integrate a large number of small, renewable sources into the grid in a more efficient and cost effective way, as current feed in tariffs, that simply reward production are expensive and ineffective.

"CVPPs that together have a higher total production and, crucially, can average out prediction errors is a promising solution, which does not require expensive additional infrastructure, just intelligent incentives."

By using a mathematical technique called proper scoring rules (a scoring rule, is a measure of the performance of an entity, be it person or machine, which repeatedly makes decisions under uncertainty), intelligent software agents, representing the individual DERs, are incentivised to report accurate estimates of their electricity production.

The researchers devised a scoring rules-based payment mechanism that incentivises the provision of accurate predictions from the CVPPs - and in turn, the member DERs - which aids in the planning of the supply schedule at the Grid. The mechanism guarantees that DERs are rewarded for providing estimates that are both accurate and have a high confidence, ensuring that software agents are given credit for high probability estimates that are close to the realised ones.

Valentin adds: "Scoring rules with specific incentive properties have long been used to design payment mechanisms that incentivise agents to report private probabilistic predictions truthfully and to the best of their forecasting abilities. "We show that our mechanism incentivises real DERs to form CVPPs, and outperforms the current state of the art payment mechanism developed for this problem."

The researchers collected half-hourly wind-speed data for a 10-week period from 16 commercial wind farms in the UK in order to validate their approach. They will be presenting their paper at the AAAI conference (22-26 July), in Toronto, Canada this week.

The Southampton researchers have been exploring these ideas for some time through the iDEaS project, an industrially-funded project, which aims to explore the issues associated with the decentralised control, operation and management of future generation electricity networks. The other members of the research team are Dr Ramachandra Kota and Dr Georgios Chalkiadakis. The project is led by Dr Alex Rogers and Professor Nick Jennings from Electronics and Computer Science at the University of Southampton. http://www.ideasproject.info/

Glenn Harris | EurekAlert!
Further information:
http://www.soton.ac.uk

More articles from Power and Electrical Engineering:

nachricht Electrical fields drive nano-machines a 100,000 times faster than previous methods
19.01.2018 | Technische Universität München

nachricht ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records
16.01.2018 | Institut für Solarenergieforschung GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>