Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Medical Robotics Experts Advance NASA ‘Satellite Surgery’ Project

Johns Hopkins engineers, recognized as experts in medical robotics, have turned their attention skyward to help NASA with a space dilemma: How can the agency fix valuable satellites that are breaking down or running out of fuel? One option -- sending a human repair crew into space -- is costly, dangerous and sometimes not even possible for satellites in a distant orbit.

Another idea is now getting attention: Send robots to the rescue and give them a little long-distance human help. Johns Hopkins scientists say the same technology that allows doctors to steer a machine through delicate abdominal surgery could someday help an operator on Earth fix a faulty fuel line on the far side of the moon.

A brief preview of this technology was presented Nov. 29, when two graduate students at Johns Hopkins’ Homewood campus in Baltimore used a modified da Vinci medical console to manipulate an industrial robot at NASA’s Goddard Space Flight Center in Greenbelt, Md., about 30 miles away. The demonstration took place during a tour of Goddard by three members of Maryland’s congressional delegation: Sen. Barbara Mikulski and Reps. Donna Edwards and Steny Hoyer.

In this demonstration, the da Vinci console was the same type that doctors use to conduct robotic surgery on cancer and cardiac patients. It included a 3D eyepiece that allowed the operator in Baltimore to see and guide the robot at Goddard. It also provided haptic, or “touch,” feedback to the operator. The goal, Johns Hopkins engineers say, is to adapt some robotic operating room strategies to help NASA to perform long-distance “surgery” on ailing satellites.

“We’re using the expertise we’ve developed in medical robotics technology and applying it to some of the remote-controlled tasks that NASA wants space robots to perform in repairing and refueling satellites,” said Louis Whitcomb, a Johns Hopkins mechanical engineering professor who was at Goddard to help supervise the recent demonstration.

Goddard is the home of NASA’s Satellite Servicing Capabilities Office, set up in 2009 to continue NASA's 30-year legacy of satellite servicing and repair, including missions to the Hubble Space Telescope. Its aims are to develop new ways to service satellites and to promote the development of a U.S. industry for conducting such operations.

To move toward these goals, NASA provided a research grant to West Virginia University, which picked Johns Hopkins as a partner because of the school’s expertise in medical robotics. One task the team has worked on is the use of a remote-controlled robot to carefully cut the plastic tape that holds a satellite’s thermal insulation blanket in place. The tape must be cut and the blanket pulled back in order to expose the satellite’s refueling port. A long-distance test of this procedure, in which an operator at Johns Hopkins will guide a robot through a tape-cutting procedure in West Virginia, is slated to take place soon

The task will be much more challenging when the target satellite is in orbit around the moon, for example. Because of the distance, there will be a significant delay between the time the operator signals the robot to move and the time these instructions are received and carried out. The research team is working on technology to help compensate for this delay.

At Johns Hopkins, the project has provided an exciting hands-on research opportunity for Jonathan Bohren, of Westchester County, N.Y., a doctoral student in mechanical engineering, and Tian Xia, of Richland, Wash., a computer science doctoral student. In the recent demonstration at Goddard, Bohren and Xia controlled the robot from a workstation at Johns Hopkins.

“The long-range goal is to be able to manipulate a space robot like this from any location to refuel satellites, for instance,” Bohren said. “A lot of satellites have the potential to have their lives extended if we can do that.”

Some satellites cost millions or even billions of dollars to construct and launch. If a cost-effective robotic rescue is possible, Xia said, then abandoning spent satellites would be wasteful.

“It would be like driving a fancy car and then ditching it after it runs out of fuel,” he said. “We already have a lot of computer-assisted surgical technology here at Johns Hopkins. We could use some of it to help fix and refuel satellites.”

The principal investigator of the satellite project at Johns Hopkins is Peter Kazanzides, an associate research professor in the Department of Computer Science in the university’s Whiting School of Engineering. Kazanzides also directs the school’s Sensing, Manipulation, and Real-Time Systems (SMARTS) lab.

Color digital image of the robotic demonstration available; contact Phil Sneiderman.

Related Links:
Satellite Servicing Capabilities Office at NASA Goddard Space Flight Center:
Sensing, Manipulation, and Real-Time Systems (SMARTS) Lab at Johns Hopkins:
Computer Integrated Interventional Systems Laboratory at Johns Hopkins:
Dynamical Systems and Control Laboratory at Johns Hopkins

Phil Sneiderman | Newswise Science News
Further information:

More articles from Power and Electrical Engineering:

nachricht Fluorescent holography: Upending the world of biological imaging
25.10.2016 | Colorado State University

nachricht Did you know that infrared heating is an essential part of automotive manufacture?
25.10.2016 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>