Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medical Robotics Experts Advance NASA ‘Satellite Surgery’ Project

07.12.2011
Johns Hopkins engineers, recognized as experts in medical robotics, have turned their attention skyward to help NASA with a space dilemma: How can the agency fix valuable satellites that are breaking down or running out of fuel? One option -- sending a human repair crew into space -- is costly, dangerous and sometimes not even possible for satellites in a distant orbit.

Another idea is now getting attention: Send robots to the rescue and give them a little long-distance human help. Johns Hopkins scientists say the same technology that allows doctors to steer a machine through delicate abdominal surgery could someday help an operator on Earth fix a faulty fuel line on the far side of the moon.

A brief preview of this technology was presented Nov. 29, when two graduate students at Johns Hopkins’ Homewood campus in Baltimore used a modified da Vinci medical console to manipulate an industrial robot at NASA’s Goddard Space Flight Center in Greenbelt, Md., about 30 miles away. The demonstration took place during a tour of Goddard by three members of Maryland’s congressional delegation: Sen. Barbara Mikulski and Reps. Donna Edwards and Steny Hoyer.

In this demonstration, the da Vinci console was the same type that doctors use to conduct robotic surgery on cancer and cardiac patients. It included a 3D eyepiece that allowed the operator in Baltimore to see and guide the robot at Goddard. It also provided haptic, or “touch,” feedback to the operator. The goal, Johns Hopkins engineers say, is to adapt some robotic operating room strategies to help NASA to perform long-distance “surgery” on ailing satellites.

“We’re using the expertise we’ve developed in medical robotics technology and applying it to some of the remote-controlled tasks that NASA wants space robots to perform in repairing and refueling satellites,” said Louis Whitcomb, a Johns Hopkins mechanical engineering professor who was at Goddard to help supervise the recent demonstration.

Goddard is the home of NASA’s Satellite Servicing Capabilities Office, set up in 2009 to continue NASA's 30-year legacy of satellite servicing and repair, including missions to the Hubble Space Telescope. Its aims are to develop new ways to service satellites and to promote the development of a U.S. industry for conducting such operations.

To move toward these goals, NASA provided a research grant to West Virginia University, which picked Johns Hopkins as a partner because of the school’s expertise in medical robotics. One task the team has worked on is the use of a remote-controlled robot to carefully cut the plastic tape that holds a satellite’s thermal insulation blanket in place. The tape must be cut and the blanket pulled back in order to expose the satellite’s refueling port. A long-distance test of this procedure, in which an operator at Johns Hopkins will guide a robot through a tape-cutting procedure in West Virginia, is slated to take place soon

The task will be much more challenging when the target satellite is in orbit around the moon, for example. Because of the distance, there will be a significant delay between the time the operator signals the robot to move and the time these instructions are received and carried out. The research team is working on technology to help compensate for this delay.

At Johns Hopkins, the project has provided an exciting hands-on research opportunity for Jonathan Bohren, of Westchester County, N.Y., a doctoral student in mechanical engineering, and Tian Xia, of Richland, Wash., a computer science doctoral student. In the recent demonstration at Goddard, Bohren and Xia controlled the robot from a workstation at Johns Hopkins.

“The long-range goal is to be able to manipulate a space robot like this from any location to refuel satellites, for instance,” Bohren said. “A lot of satellites have the potential to have their lives extended if we can do that.”

Some satellites cost millions or even billions of dollars to construct and launch. If a cost-effective robotic rescue is possible, Xia said, then abandoning spent satellites would be wasteful.

“It would be like driving a fancy car and then ditching it after it runs out of fuel,” he said. “We already have a lot of computer-assisted surgical technology here at Johns Hopkins. We could use some of it to help fix and refuel satellites.”

The principal investigator of the satellite project at Johns Hopkins is Peter Kazanzides, an associate research professor in the Department of Computer Science in the university’s Whiting School of Engineering. Kazanzides also directs the school’s Sensing, Manipulation, and Real-Time Systems (SMARTS) lab.

Color digital image of the robotic demonstration available; contact Phil Sneiderman.

Related Links:
Satellite Servicing Capabilities Office at NASA Goddard Space Flight Center:
http://ssco.gsfc.nasa.gov/about.html
Sensing, Manipulation, and Real-Time Systems (SMARTS) Lab at Johns Hopkins:
http://smarts.lcsr.jhu.edu
Computer Integrated Interventional Systems Laboratory at Johns Hopkins:
http://ciis.lcsr.jhu.edu
Dynamical Systems and Control Laboratory at Johns Hopkins
http://dscl.lcsr.jhu.edu

Phil Sneiderman | Newswise Science News
Further information:
http://www.jhu.edu

More articles from Power and Electrical Engineering:

nachricht Engineers program tiny robots to move, think like insects
15.12.2017 | Cornell University

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>