Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Market opportunity: waste heat

03.06.2009
Thermoelectric generators transform unused waste heat into electricity. This can increase the efficiency of processes and enable energetically self-sufficient systems.

Both options offer large market opportunities. More than 400 professionals will be discussing this subject at the 28th International Conference on Thermoelectrics from 26th to 30th July 2009.

According to a study conducted by the Lawrence Livermore National Laboratory, more than 60 percent of all consumed fossil primary energy are dissipated unused as heat energy. Thermoelectric generators (TE generators) could be the remedy. Such TE generators are capable of salvaging part of the energy proportion lost as heat, e.g., in heating equipment, in industrial processes, and particularly in motor vehicles, and converting it into electricity. TE generators in space, where they have been acting as highly reliable suppliers of energy for space probes and satellites for decades now, demonstrate that this can be done - with zero emissions, noise, and vibration.

Energetically self-sufficient systems
Commercially available, thermoelectrically driven watches have shown that the difference between the body temperature and the ambient temperature alone is sufficient for powering devices with low consumption. TE generators can, for instance, secure the power supply of energetically self-sufficient sensor networks using such small temperature differences, from whatever source they may come. Therefore, they are to supersede normal or rechargeable batteries in future, the lifetimes of which are not sufficient for many sensor types. The energy generated is absolutely enough to not only power the sensor but also radio transmit the measured data. Network independent sensor systems can be employed in many ways: So-called body sensor networks and medical sensors could monitor individual body functions wirelessly in future; sensors assume control of service functionality in transport or report material fatigue, in aircraft, for example. A study conducted by the Frost & Sullivan consulting company ("Advances in Energy Harvesting Technologies", Sept. 2007) forecasts a leading role of thermoelectrics in energetically self-sufficient sensor systems.
Excellent market opportunities
For the industry, higher energy efficiency due to thermoelectrics has long ceased to be a vision of the future. With further thermoelectric material improvements, a tenfold increase of the current market size can be counted upon. This is not the least reason why countries such as the USA, China, and Japan above all are investing heavily in thermoelectrics research. New nanotechnological approaches have led to a significant material quality improvement in recent years. In its role as a leading nation in the field of renewable energy, Germany makes great efforts to continue to play a prominent role as well. As an example, wafer based thin film thermoelectric generators were developed at the Fraunhofer Institute for Physical Measurement Techniques IPM in Freiburg and are now marketed by Micropelt GmbH.
A conference in Freiburg
As a token of appreciation by the international thermoelectrics community, experts from all over the world will be meeting in Freiburg for the leading thermoelectrics event worldwide this year. From 26th to 30th July 2009 at the 28th International Conference on Thermoelectrics, more than 400 experts from industry and research will be exchanging views, sharing their latest research results and discussing the technology's market potentials. For more information, please go to: http://www.ict2009.its.org
Background:
The Fraunhofer Institute for Physical Measurement Techniques IPM develops and implements optical sensor and imaging systems as well as functional materials. Optics, mechanics, electronics, and software are perfectly tuned to each other in these systems. The solutions are designed to be especially robust and are each specifically tailored to the conditions at their places of use. In the thermoelectrics field, the institute occupies a leading position in materials research, simulation, and systems design.

Holger Kock | Fraunhofer-Gesellschaft
Further information:
http://www.ipm.fraunhofer.de
http://www.ict2009.its.org

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>