Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light might prompt graphene devices on demand

11.10.2012
Rice University researchers find plasmonics show promise for optically induced electronics
Rice University researchers are doping graphene with light in a way that could lead to the more efficient design and manufacture of electronics, as well as novel security and cryptography devices.

Manufacturers chemically dope silicon to adjust its semiconducting properties. But the breakthrough reported in the American Chemical Society journal ACS Nano details a novel concept: plasmon-induced doping of graphene, the ultrastrong, highly conductive, single-atom-thick form of carbon.

That could facilitate the instant creation of circuitry – optically induced electronics – on graphene patterned with plasmonic antennas that can manipulate light and inject electrons into the material to affect its conductivity.

The research incorporates both theoretical and experimental work to show the potential for making simple, graphene-based diodes and transistors on demand. The work was done by Rice scientists Naomi Halas, Stanley C. Moore Professor in Electrical and Computer Engineering, a professor of biomedical engineering, chemistry, physics and astronomy and director of the Laboratory for Nanophotonics; and Peter Nordlander, professor of physics and astronomy and of electrical and computer engineering; physicist Frank Koppens of the Institute of Photonic Sciences in Barcelona, Spain; lead author Zheyu Fang, a postdoctoral researcher at Rice; and their colleagues.

“One of the major justifications for graphene research has always been about the electronics,” Nordlander said. “People who know silicon understand that electronics are only possible because it can be p- and n-doped (positive and negative), and we’re learning how this can be done on graphene.

“The doping of graphene is a key parameter in the development of graphene electronics,” he said. “You can’t buy graphene-based electronic devices now, but there’s no question that manufacturers are putting a lot of effort into it because of its potential high speed.”

Researchers have investigated many strategies for doping graphene, including attaching organic or metallic molecules to its hexagonal lattice. Making it selectively – and reversibly – amenable to doping would be like having a graphene blackboard upon which circuitry can be written and erased at will, depending on the colors, angles or polarization of the light hitting it.

The ability to attach plasmonic nanoantennas to graphene affords just such a possibility. Halas and Nordlander have considerable expertise in the manipulation of the quasiparticles known as plasmons, which can be prompted to oscillate on the surface of a metal. In earlier work, they succeeded in depositing plasmonic nanoparticles that act as photodetectors on graphene.

These metal particles don’t so much reflect light as redirect its energy; the plasmons that flow in waves across the surface when excited emit light or can create “hot electrons” at particular, controllable wavelengths. Adjacent plasmonic particles can interact with each other in ways that are also tunable.

That effect can easily be seen in graphs of the material’s Fano resonance, where the plasmonic antennas called nonamers, each a little more than 300 nanometers across, clearly scatter light from a laser source except at the specific wavelength to which the antennas are tuned. For the Rice experiment, those nonamers – eight nanoscale gold discs arrayed around one larger disc – were deposited onto a sheet of graphene through electron-beam lithography. The nonamers were tuned to scatter light between 500 and 1,250 nanometers, but with destructive interference at about 825 nanometers.

At the point of destructive interference, most of the incident light energy is converted into hot electrons that transfer directly to the graphene sheet and change portions of the sheet from a conductor to an n-doped semiconductor.

Arrays of antennas can be affected in various ways and allow phantom circuits to materialize under the influence of light. “Quantum dot and plasmonic nanoparticle antennas can be tuned to respond to pretty much any color in the visible spectrum,” Nordlander said. “We can even tune them to different polarization states, or the shape of a wavefront.

“That’s the magic of plasmonics,” he said. “We can tune the plasmon resonance any way we want. In this case, we decided to do it at 825 nanometers because that is in the middle of the spectral range of our available light sources. We wanted to know that we could send light at different colors and see no effect, and at that particular color see a big effect.”

Nordlander said he foresees a day when, instead of using a key, people might wave a flashlight in a particular pattern to open a door by inducing the circuitry of a lock on demand. “Opening a lock becomes a direct event because we are sending the right lights toward the substrate and creating the integrated circuits. It will only answer to my call,” he said.

Rice co-authors of the paper are graduate students Yumin Wang and Andrea Schlather, research scientist Zheng Liu, and Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry.

The research was supported by the Robert A. Welch Foundation, the Office of Naval Research, the Department of Defense National Security Science and Engineering Faculty Fellows program and Fundacio Cellex Barcelona.

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,708 undergraduates and 2,374 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for “best value” among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to www.rice.edu/nationalmedia/Rice.pdf.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu
http://news.rice.edu/2012/10/10/light-might-prompt-graphene-devices-on-demand/

More articles from Power and Electrical Engineering:

nachricht Batteries with better performance and improved safety
23.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Researchers take next step toward fusion energy
16.11.2017 | Texas A&M University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>