Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liberating devices from their power cords

20.05.2014

Imagine a future in which our electrical gadgets are no longer limited by plugs and external power sources.

This intriguing prospect is one of the reasons for the current interest in building the capacity to store electrical energy directly into a wide range of products, such as a laptop whose casing serves as its battery, or an electric car powered by energy stored in its chassis, or a home where the dry wall and siding store the electricity that runs the lights and appliances.


Close-up of structural supercapacitor. (Joe Howell / Vanderbilt)

It also makes the small, dull grey wafers that graduate student Andrew Westover and Assistant Professor of Mechanical Engineering Cary Pint have made in Vanderbilt’s Nanomaterials and Energy Devices Laboratory far more important than their nondescript appearance suggests.

“These devices demonstrate – for the first time as far as we can tell – that it is possible to create materials that can store and discharge significant amounts of electricity while they are subject to realistic static loads and dynamic forces, such as vibrations or impacts,” said Pint. “Andrew has managed to make our dream of structural energy storage materials into a reality.”

When you can integrate energy into the components used to build systems, it opens the door to a whole new world of technological possibilities.That is important because structural energy storage will change the way in which a wide variety of technologies are developed in the future. “When you can integrate energy into the components used to build systems, it opens the door to a whole new world of technological possibilities. All of a sudden, the ability to design technologies at the basis of health, entertainment, travel and social communication will not be limited by plugs and external power sources,” Pint said.

The new device that Pint and Westover has developed is a supercapacitor that stores electricity by assembling electrically charged ions on the surface of a porous material, instead of storing it in chemical reactions the way batteries do. As a result, supercaps can charge and discharge in minutes, instead of hours, and operate for millions of cycles, instead of thousands of cycles like batteries.

In a paper appearing online May 19 in the journal Nano Letters, Pint and Westover report that their new structural supercapacitor operates flawlessly in storing and releasing electrical charge while subject to stresses or pressures up to 44 psi and vibrational accelerations over 80 g (significantly greater than those acting on turbine blades in a jet engine).

Furthermore, the mechanical robustness of the device doesn’t compromise its energy storage capability. “In an unpackaged, structurally integrated state our supercapacitor can store more energy and operate at higher voltages than a packaged, off-the-shelf commercial supercapacitor, even under intense dynamic and static forces,” Pint said.

One area where supercapacitors lag behind batteries is in electrical energy storage capability: Supercaps must be larger and heavier to store the same amount of energy as lithium-ion batteries. However, the difference is not as important when considering multifunctional energy storage systems.

Supercapacitors store ten times less energy than current lithium-ion batteries, but they can last a thousand times longer.“Battery performance metrics change when you’re putting energy storage into heavy materials that are already needed for structural integrity,” said Pint. “Supercapacitors store ten times less energy than current lithium-ion batteries, but they can last a thousand times longer. That means they are better suited for structural applications. It doesn’t make sense to develop materials to build a home, car chassis, or aerospace vehicle if you have to replace them every few years because they go dead.”

Westover’s wafers consist of electrodes made from silicon that have been chemically treated so they have nanoscale pores on their inner surfaces and then coated with a protective ultrathin graphene-like layer of carbon. Sandwiched between the two electrodes is a polymer film that acts as a reservoir of charged ions, similar to the role of the electrolyte paste in a battery. When the electrodes are pressed together, the polymer oozes into the tiny pores in much the same way that melted cheese soaks into the nooks and crannies of artisan bread in a panini. When the polymer cools and solidifies, it forms an extremely strong mechanical bond.

“The biggest problem with designing load-bearing supercaps is preventing them from delaminating,” said Westover. “Combining nanoporous material with the polymer electrolyte bonds the layers together tighter than superglue.”

The use of silicon in structural supercapacitors is best suited for consumer electronics and solar cells, but Pint and Westover are confident that the rules that govern the load-bearing character of their design will carry over to other materials, such as carbon nanotubes and lightweight porous metals like aluminum.

The intensity of interest in “multifunctional” devices of this sort is reflected by the fact that the U.S. Department of Energy’s Advanced Research Project Agency for Energy is investing $8.7 million in research projects that focus specifically on incorporating energy storage into structural materials. There have also been recent press reports of several major efforts to develop multifunctional materials or structural batteries for use in electric vehicles and for military applications. However, Pint pointed out that there have not been any reports in the technical literature of tests performed on structural energy storage materials that show how they function under realistic mechanical loads.

Amrutur Anilkumar, professor of the practice in mechanical engineering, postdoctoral associate Shahana Chatterjee, graduate student Landon Oakes, undergraduate mechanical engineering majors John Tian, Shivaprem Bernath and Farhan Nur Shabab and high school student Rob Edwards collaborated in the project.

The research was supported by National Science Foundation grants CMMI 1334269 and EPS 104083. Materials fabrication was conducted in part at the Center for Nanophase Materials Sciences at Oak Ridge National Laboratory that is supported by the Office of Basic Energy Sciences of the U.S. Department of Energy.

Contact:
David Salisbury, (615) 322-NEWS
david.salisbury@vanderbilt.edu

David Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.deu
http://news.vanderbilt.edu/2014/05/liberating-devices/

Further reports about: Energy Vanderbilt batteries battery cycles electricity electrodes ions materials pores structural

More articles from Power and Electrical Engineering:

nachricht Vortex laser offers hope for Moore's Law
29.07.2016 | University at Buffalo

nachricht Ultra-flat circuits will have unique properties
26.07.2016 | Rice University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>