Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


LED innovation to bring a brighter future

A small step for LED innovation, a great leap for energy saving

LED light bulbs can be brighter and more energy efficient than ever, thanks to a high performance LED driver newly developed by researchers from the Department of Electronic and Information Engineering.

The new driver powers LED light bulbs with an innovative approach called multi-level PWM (Pulse-Width Modulation), which delivers remarkable improvements in terms of light quality and energy efficiency, when compared to pulse width modulation and linear driver approaches currently used in LED products.

By traditional method of pulse width modulation, LEDs are fed pulsed current instead of steady DC. The drive current is turned ON and OFF at a rate faster than being perceptible by human eyes. Powering LEDs in pulses makes their light output easily controllable.

The research team, formed by Dr Lai Yuk Ming, Dr Loo Ka Hong and Prof. Michael Tse, gives the PWM method a new twist. The pulsed operation is redesigned in a way to maximize light output while minimizing wasted energy in the form of heat. The result is higher lumen per watt. Dr Loo Ka Hong said they achieved additional energy saving by up to 15%.

When used in a large scale application, it can save a lot of energy. The LED billboard on One Times Square in New York is a good example. The math goes like this: The giant display uses 12 million bulbs and 250 KW of power. If the billboard is on for 16 hours a day, the energy bill comes to US$18,000 a month. A 12% drop in energy consumption means US$2,160 in energy savings. That’s something to roll your eyes at.

Furthermore, it has lowered cooling requirements and needs smaller size heat sink compared to conventional methods. That means LED systems can be made smaller. With excellent dimming capability, the new MPWM driver allows manufacturers to create fully dimmable LEDs, which can be dimmed down to 0 watt of power. These superior qualities pave way for brighter, smarter and more versatile LED lighting solutions.

The world is switching to LEDs for huge environmental benefits. If all the traditional light bulbs in the world were replaced with energy-saving ones, lighting energy use could be cut by 40%, according to Worldwatch Institute [1]. The Energy Saving Trust has similar projections [2], which said the resultant carbon saving would be the equivalent of taking 70,000 cars off the road.

As the greenest alternative to incandescent lamps, LEDs are a popular choice of lighting but they are not perfect. Consumers are looking for a brighter and more natural glow matching up to incandescent light bulbs. The demand for brightness is even more pronounced in high power applications such as automobile headlights and architectural lightings. LED research worldwide is looking to build a perfect substitute to incandescent. It is exciting to have advanced LED lighting with a simple solution such as MPWM that brings about significant energy saving.

Obviously, the novel technology allows a better product to be made. High illuminating performance combined with good thermal protection allowed manufacturers to create compact lighting solutions with a very high lumen output. And the additional cost is little because all of these qualities could be achieved with the use of low cost ICs. This could be music to the ear for LED manufacturers.

This innovative applied technology has already aroused the attention of the international market. Recently it has won a Gold Award at the 41st International Exhibition of Inventions of Geneva in April of 2013.

Wilfred Lai | Research asia research news
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>