Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ivy-Covered Walls Take on New Power from the Sun

11.07.2011
Solar-generated electricity is taking a new form – that of solar panels shaped like artistically fashioned ivy leaves decorating a wall’s surface.

The first location in the United States to apply this colorful array is the University of Utah (the U) in Salt Lake City. This new product called Solar Ivy was developed by Sustainably Minded Interactive Technology (SMIT), a company in New York.


Sustainably Minded Interactive Technologies
Drawings of the solar panels in a natural-looking "ivy-covered wall" arrangement.




The idea and most of the cash for the project comes from the U’s student-led Sustainable Campus Initiative Fund (SCIF), which is funded by student contributions. Each year, students compete for grants to finance projects that have a positive environmental impact and help educate the campus community about developing earth-conscious habits.

Bringing Solar Ivy to the U was spearheaded by Tom Melburn, an environmental studies major. His project was awarded a grant for roughly two-thirds of the $42,000 cost of the project. The remaining third will be raised from the campus community in a drive being announced today to generate funds and awareness of the many ‘green’ efforts taking place all over campus.

“Students are becoming so engaged in creating a sustainable campus that we could only partially fund all the projects submitted this year,” says Whitney Williams, SCIF coordinator. “So, we’re turning to others in our community to partner on this one. By buying a leaf on the array, donors will make possible not only a novel energy-saving device, but also a highly visible reminder on campus to conserve electricity.”

Donations to the project can be made online at http://tiny.utah.edu/solarivyUU.

Solar Ivy is a composition of small photovoltaic panels shaped so that they can be installed in an attractive arrangement, much like ivy growing over a building’s surface. The panels generate electricity that is used by the building, offsetting the amount of power the building buys from the utility company. Panels can be shaped and colored to suit the installation.

“We’re considering Orson Spencer Hall for the array because of its solar exposure and its visibility,” says Melburn, who is coordinating the project with campus facilities managers. “The south-facing brick façade receives high levels of unobstructed sun all year. Its location at the center of campus means high levels of traffic.” SCIF and Project Manager Archie Phillips also are considering the south façade of the Olpin Student Union building, which also receives significant solar exposure. The decision as to which building to use will be decided during the design phase of the project over the coming weeks.

The installation of the prefabricated panels is expected to begin late this fall and projected to take a few weeks to complete.

About the Sustainable Campus Initiative Fund (SCIF):
SCIF is a student-led enterprise directed by the Office of Sustainability. The fund provides financial support for real-world projects that improve the University of Utah’s environmental quality and make the campus more sustainable. SCIF allocated $171,000 to 14 projects for the 2011 school year. For more information, explore the SCIF website at www.sustainability.utah.edu/SCIF.
About Solar Ivy:
Solar Ivy (www.solarivy.com) is a product of the Brooklyn, N.Y. firm SMIT that has been challenging accepted notions about solar power collection throughout the world.

Whitney Williams, University of Utah Office of Sustainability, office 801-581-7510, whitney.williams@sustainability.utah.edu

Valoree Dowell, University of Utah Public Relations, office 801-585-6861, cell 801-403-3128, v.dowell@ucomm.utah.edu

Whitney Williams | Newswise Science News
Further information:
http://www.solarivy.com
http://www.sustainability.utah.edu/SCIF

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>