Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ivy-Covered Walls Take on New Power from the Sun

11.07.2011
Solar-generated electricity is taking a new form – that of solar panels shaped like artistically fashioned ivy leaves decorating a wall’s surface.

The first location in the United States to apply this colorful array is the University of Utah (the U) in Salt Lake City. This new product called Solar Ivy was developed by Sustainably Minded Interactive Technology (SMIT), a company in New York.


Sustainably Minded Interactive Technologies
Drawings of the solar panels in a natural-looking "ivy-covered wall" arrangement.




The idea and most of the cash for the project comes from the U’s student-led Sustainable Campus Initiative Fund (SCIF), which is funded by student contributions. Each year, students compete for grants to finance projects that have a positive environmental impact and help educate the campus community about developing earth-conscious habits.

Bringing Solar Ivy to the U was spearheaded by Tom Melburn, an environmental studies major. His project was awarded a grant for roughly two-thirds of the $42,000 cost of the project. The remaining third will be raised from the campus community in a drive being announced today to generate funds and awareness of the many ‘green’ efforts taking place all over campus.

“Students are becoming so engaged in creating a sustainable campus that we could only partially fund all the projects submitted this year,” says Whitney Williams, SCIF coordinator. “So, we’re turning to others in our community to partner on this one. By buying a leaf on the array, donors will make possible not only a novel energy-saving device, but also a highly visible reminder on campus to conserve electricity.”

Donations to the project can be made online at http://tiny.utah.edu/solarivyUU.

Solar Ivy is a composition of small photovoltaic panels shaped so that they can be installed in an attractive arrangement, much like ivy growing over a building’s surface. The panels generate electricity that is used by the building, offsetting the amount of power the building buys from the utility company. Panels can be shaped and colored to suit the installation.

“We’re considering Orson Spencer Hall for the array because of its solar exposure and its visibility,” says Melburn, who is coordinating the project with campus facilities managers. “The south-facing brick façade receives high levels of unobstructed sun all year. Its location at the center of campus means high levels of traffic.” SCIF and Project Manager Archie Phillips also are considering the south façade of the Olpin Student Union building, which also receives significant solar exposure. The decision as to which building to use will be decided during the design phase of the project over the coming weeks.

The installation of the prefabricated panels is expected to begin late this fall and projected to take a few weeks to complete.

About the Sustainable Campus Initiative Fund (SCIF):
SCIF is a student-led enterprise directed by the Office of Sustainability. The fund provides financial support for real-world projects that improve the University of Utah’s environmental quality and make the campus more sustainable. SCIF allocated $171,000 to 14 projects for the 2011 school year. For more information, explore the SCIF website at www.sustainability.utah.edu/SCIF.
About Solar Ivy:
Solar Ivy (www.solarivy.com) is a product of the Brooklyn, N.Y. firm SMIT that has been challenging accepted notions about solar power collection throughout the world.

Whitney Williams, University of Utah Office of Sustainability, office 801-581-7510, whitney.williams@sustainability.utah.edu

Valoree Dowell, University of Utah Public Relations, office 801-585-6861, cell 801-403-3128, v.dowell@ucomm.utah.edu

Whitney Williams | Newswise Science News
Further information:
http://www.solarivy.com
http://www.sustainability.utah.edu/SCIF

More articles from Power and Electrical Engineering:

nachricht Making magnets flip like cats at room temperature
21.07.2016 | Johannes Gutenberg-Universität Mainz

nachricht NASA eyes first-ever carbon-nanotube mirrors for CubeSat telescope
13.07.2016 | NASA/Goddard Space Flight Center

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>