How to make mobile batteries last longer by controlling energy flows at nano-level

Until now, scientists had just an average view of energy conversion efficiency in nano-devices. For the first time, a more complete picture has been described thanks to University of Luxembourg research.

“We discovered universal properties about the way energy efficiency of nano-systems fluctuates,” explained Prof. Massimiliano Esposito of Luxembourg University’s Physics and Materials research unit. Using this knowledge it will be possible to control energy flows more accurately, so cutting waste.

These energy controls could be achieved by a technological regulator which would prevent the natural process whereby heat generated in one part of a device is lost as it spreads to cooler areas. In other words, this adds interesting nuances to the Second Law of Thermodynamics, one of the fundamental theories in physics.

This theoretical understanding of how to regulate of energy flows brings to life “Maxwell’s demon”, a notion introduced by the major 19th Century mathematician and physicist James Clerk Maxwell. He imagined that this “demon” could overturn the laws of nature by allowing cold particles to flow towards hot areas.

Two recent papers published in highly respected scientific journals (Physical Review X and Nature Communications) describe these findings. The research team under Prof. Esposito used mathematical models to arrive at these conclusions. These ideas will be put into practice in the laboratory before any eventual practical technological applications are developed.

Notes to editor:

The full scientific articles “Thermodynamics with continuous information flow” as published in “Physical Review X” (DOI: 10.1103/PhysRevX.4.031015) and “The unlikely Carnot efficiency” as published in “Nature Communications” (DOI: 10.1038/ncomms5721) can be viewed here: http://orbilu.uni.lu/handle/10993/18026  and here: http://orbilu.uni.lu/handle/10993/18027 

Weitere Informationen:

http://www.uni.lu  – Website of the University of Luxembourg
http://orbilu.uni.lu/handle/10993/18026  – Publication: “Thermodynamics with continuous information flow”
http://orbilu.uni.lu/handle/10993/18027  – Publication: “The unlikely Carnot efficiency”

Media Contact

Sophie Kolb Universität Luxemburg - Université du Luxembourg

All latest news from the category: Power and Electrical Engineering

This topic covers issues related to energy generation, conversion, transportation and consumption and how the industry is addressing the challenge of energy efficiency in general.

innovations-report provides in-depth and informative reports and articles on subjects ranging from wind energy, fuel cell technology, solar energy, geothermal energy, petroleum, gas, nuclear engineering, alternative energy and energy efficiency to fusion, hydrogen and superconductor technologies.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors