Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-Power LED-Modules with more Flexibility and Power

10.03.2015

Laser and LED Specialist Omicron presents a new Generation of LED modules

The innovative team of Omicron has developed new high-performance LED modules. The updated product in comparison to the previous version is characterized by greater functionality and flexibility for applications in industry and research.

With more than 40 different wavelengths from deep UV to the near infrared and optical output power of several hundred milliwatts, the so-called "LEDMOD" series can be used in many applications such as microscopy, chemical analysis, spectroscopy, forensics and other areas.

The LED modules are available in a fibre-coupled version or with free emission. The modules have modulation inputs for fast analogue intensity modulation with up to 200 kilohertz and digital modulation with a switching time of < 2µs.

High-precision temperature stabilization of the LED chips ensures a very good performance and wavelength stability. This is important especially for applications that not only need an exact output power, but also a high stability of the emission spectrum.

The digital modulation can be operated via external modulation signals, as well as an internal, programmable signal generator. A SYNC output ensures synchronization with external devices such as cameras, spectrometers and lock-in amplifiers.

One or several optional "LEDMOD" modules can be comfortably controlled via RS-232 and USB 2.0 interface by either the supplied software 'Omicron Control Center' or the customer's own software.

The new "LEDMOD high power" modules by Omicron were presented in February 2015 at the trade fair "Photonics West" in San Francisco (United States).


Further information on Omicron laser products can be found at www.omicron-laser.de

About Omicron
Since 1989, Omicron has been developing, building and producing innovative laser systems. With a highly qualified team Omicron specialized in customized solutions for applications in the fields of medicine, research, biotechnology, such as microscopy and flow cytometry, digital imaging and optical data storage as well as quality assurance and measurement engineering. Product development and production comply with European and US guidelines. A broad band of laser sources in the range of UV VIS/IR is available to satisfy individual customer requirements. Omicron offers single light sources as well as complete system solutions. Omicron pursues the objective of being an industry leader in product development and has not only set trends in laser technology but also has drawn worldwide attention with its developments.

Herausgeber:

Omicron-Laserage Laserprodukte GmbH, Raiffeisenstr. 5e, 63110 Rodgau, www.omicron-laser.de


Pressekontakt:

PR Solutions by Melanie Schacker, Am Nonnenhof 55, 60435 Frankfurt/Main
Telefon 069 95 20 8991, Telefax 069 95 20 8992, E-Mail presse@pr-schacker.de

Omicron PR-Schacker | Omicron

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>