Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Handy corrosion sensors protect cultural and historical objects

29.05.2012
A safe companion: the AirCorr logger detects the corrosion risk of ambient air in real-time

Paris - Japan, a historical tapestry on its journey from the Louvre to an exhibition in Osaka: the AirCorr corrosion logger monitors the air quality surrounding the tapestry. The air humidity fluctuates minimally; the temperature is also fine. However, upon opening the transport box and exhibiting the tapestry in Osaka, the corrosivity increases tremendously.

The AirCorr corrosion logger registers the changes in real time. The data can be read via a wireless interface and transport procedures or the exhibition surroundings can be adjusted. Conventional sensor devices often measure only air humidity and temperature, and, therefore, would not have detected the increased air corrosivity, risking irrevocable damage to the cultural object.

A team of European researchers, museum experts and industry representatives developed the transportable and user-friendly real-time measuring device AirCorr in order to control the impact of corrosive atmospheres, especially on objects of importance to cultural heritage. The plug-in sensor units can be exchanged easily and, hence, can be used to monitor and protect various metallic objects. Important conclusions about the corrosiveness of the ambient air can also be drawn for non-metallic objects.

The loggers can be mounted almost everywhere since they are battery-driven and consume little power. Currently, the devices are being tested in several European museums and exhibitions. Furthermore, the user-friendliness of the logger software is being improved by including existing standards and recommendations, which allow the user to draw straightforward conclusions from the measured data.

The concept of the measuring device is simple and yet highly effective: the sensor is comprised of a thin metal layer (copper, silver, lead, iron, zinc, tin, bronze, or brass), which is deposited on an insulating substrate (made of ceramic or polymer). Corrosion of the metal layer causes an increase in its electrical resistance, which is recorded and can be used to calculate the degree of corrosion. A part of the sensor is protected against corrosion by an organic coating and serves as a reference to compensate
for the temperature-dependence of the electrical resistance.
The loggers and sensors have been developed and brought to commercial viability within the framework of the European research project »MUSECORR - Protection of cultural heritage by real-time corrosion monitoring« (FP7/2007-2013, project number 226539). Researchers from the Fraunhofer Institute for Electron Beam and Plasma Technology FEP in Dresden used their vacuum-based precision coating technologies to develop a process for depositing thin metal layers in a precise and reproducible manner on the plug-in sensors for indoor use. Thicker metal layers for outdoor sensors were manufactured by the Institute of Chemical Technology in Prague. The cost-efficient AirCorr loggers are available with different resolutions designed for indoor or outdoor use can be purchased from the French Corrosion Institute, which is coordinating the project.
About the EU project »MUSECORR«
The European research project »MUSECORR - Protection of cultural heritage by real-time corrosion monitoring« (FP7/2007-2013, project number 226539) aims to develop handy corrosion sensors and loggers to monitor and protect historical and cultural heritage objects within a period of 3 years. The project coordinator is the French Corrosion Institute (»Institut de la Corrosion«) in Brest. Project partners include: the research institutes: Institute of Chemical Technology in Prague, Czech Republic, and the Fraunhofer Institute for Electron Beam and Plasma Technology FEP in Dresden, Germany; the developer of the measuring technology: nke SA in Hennebont, France; and museum experts from the »Centre de Recherche et de Restauration des Musées de France« in Paris, the Swiss National Museum, and the National Museum of Denmark. The project ends in June 2012. Subsequent marketing of the product is planned by the French Corrosion Institute.
Scientific contact:
Tomas Prosek
Institut de la Corrosion, France
Phone +33 298 058 905
tomas.prosek@institut-corrosion.fr
Dr. Bert Scheffel
Fraunhofer Institute for Electron Beam and Plasma Technology FEP
Phone +49 351 2586-243
bert.scheffel@fep.fraunhofer.de
Press contact:
Annett Arnold
Fraunhofer Institute for Electron Beam and Plasma Technology FEP
Phone +49 351 2586-452
annett.arnold@fep.fraunhofer.de

Annett Arnold | Fraunhofer-Institut
Further information:
http://www.musecorr.eu/
http://www.fep.fraunhofer.de/press

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>