Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Grid Stability Thanks to Precise Forecasts

A self-learning software system from Siemens can stabilize power grids. The program, which is based on neural networks, can forecast the electrical output of renewable energy sources over a 72-hour period with more than 90 percent accuracy.
The data helps grid operators calculate power demand in their networks and fairly exactly order the amount of additional electricity required in advance. As reported by the magazine "Pictures of the Future", Siemens's global Corporate Technology (CT) research department developed the forecast software for Swissgrid in Switzerland.

Approximately five percent of the electricity sent across borders in Europe flows through Switzerland (e.g. power from Germany or France to Italy). Swissgrid plays a key role here by ensuring that the electricity transmissions run smoothly. However, a small amount of electricity is lost along each kilometer of power lines. In order to offset these losses, Swissgrid buys electricity on the spot market up to 16 hours in advance of projected shortages.

Up until now, experts at Swissgrid have calculated the anticipated transfer losses on the basis of calendar days, weather forecasts, and grid operator plans in neighboring countries. The new algorithm developed by Siemens researchers derives the projected transfer losses directly from electricity consumption forecasts. Along with data from the past, the system also uses variables such as current load flows, power generation figures for renewable sources, weather data, and water levels in pumped-storage hydroelectric power stations.

The error rate for consumption forecasts at Swissgrid now stands at 11 percent; the new algorithm will improve this figure by one percentage point, which translates into savings of approximately 200,000 euros per year.

Siemens' forecasting method is based on an artificial neural network - software that functions in a manner similar to the human brain. Siemens CT develops neural networks in order to calculate the behavior of highly complex systems, which might include wind farms, gas turbines, or even stock markets.

Based on historical data, the software learns to make the most accurate predictions possible. The system's learning capability makes it particularly suitable for adjusting grid operation to the fluctuating power outputs associated with renewable energy sources. The most efficient use of existing power networks is a building block of the energy revolution.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:

More articles from Power and Electrical Engineering:

nachricht Steering a fusion plasma toward stability
28.10.2016 | American Physical Society

nachricht Solid progress in carbon capture
27.10.2016 | King Abdullah University of Science & Technology (KAUST)

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>