Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Foam reactor is ten times more energy efficient

There is considerable worldwide demand for new types of reactors for the rapid and well- controlled production of high value chemicals. Charl Stemmet has developed the porous foam reactor, which has an energy efficiency ten times higher than traditional reactors at comparable production rates. Industrial partners such as BASF, DSM and Shell will make use of the research results. The project was funded by Technology Foundation STW.

In this project, Charl Stemmet investigated a new, structured support for catalysts for use in gas-liquid reactors. He used a highly porous solid foam as the support material, having up to 97% open space available and a very large surface area per reactor volume. This large surface area is important for mass-transfer-limited, gas-liquid reactions; the larger the surface area, the greater the production per unit reactor volume.

Reactor design
To make a good reactor design with this new catalyst support, Stemmet first of all examined the flow behaviour of gas and liquid, and experimentally determined the design equations. He then compared the foam reactor with the current standard for gas-liquid reactions using a solid catalyst: a so-called packed bed of stacked catalyst particles.

The foam reactor has a volume 1.5 times larger than that of the packed bed for the same gas and liquid flows and the same production rate. However, the energy efficiency of the foam reactor is ten times higher than that of the packed bed. The results will be used by the industrial partners in this project: BASF Nederland B.V. (formerly Engelhard) , DSM Research B.V., Ecoceramics B.V., Lummus Technology (formerly ABB Lummus Global Inc.), Recemat B.V. and Shell Global Solutions International B.V.

About Technology Foundation STW
Technology Foundation STW funds applied technical scientific research. It brings together university and industrial partners in a user committee prior to the start of a project. Under the guidance of Technology Foundation STW, a user committee regularly discusses the progress of the research project concerned and the intended direction of the research in question. This intensive cooperation leads to commercially applicable results that can often be exploited under a patent. Technology Foundation STW has a budget of about 50 million euro per year.

Charl Stemmet | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht 3-D-printed magnets
26.10.2016 | Vienna University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

More VideoLinks >>>