Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Finnish technology research facing the most challenging fusion energy project

29.01.2009
Remote maintenance systems for ITER to be developed in Finland

Fusion is a promising option for a large scale energy production for the second half of this century and beyond. Fusion has practically unlimited fuel resources, and it is safe and environmentally sound.

The global ITER-test power plant project can be seen as one of the most challenging energy projects of mankind and Europe has a significant role in it. VTT Technical Research Centre of Finland and Tampere University of Technology (TUT) are responsible for developing the maintenance of the critical parts of the fusion plant that is been built in Europe (France). A full-scale research platform to develop and test the maintenance robot and remote handling operations for ITER will be taken into use on January 29 in Finland.

ITER-test power plant project is a significant step toward the development of fusion energy. The development project stretching over decades aims to prove the scientific and technological feasibility of fusion. If successful, the project proves fusion to be a true alternative energy source of the future. In addition to EU and Switzerland, India, Japan, China, South-Korea, Russia, and United States are also ITER Parties. Each Party has its own significant fusion programme but the international ITER is the most important and first priority project and proves that global collaboration can be done. European contributions to ITER are managed and contracted by the new Joint Undertaking “Fusion for Energy” established in Barcelona.

The EU owned and VTT hosted ITER remote handling system’s research and development environment, is an important milestone and appreciation for Finnish expertise. The development of the he remote handling system is one of the most significant development projects within the Tekes funded fusion areas, where virtual simulation and modelling know-how are forwarded for the utilization of the industry. As a result of hard international competition the DTP2 research environment was chosen to be part of VTT and Tampere University of Technology international Remote Operation and Virtual Reality Centre ROViR. The DTP2 facility and projects related are funded mainly by Fusion for Energy and Tekes.

Remote operation and virtual reality have a core role in the maintenance of ITER reactor as they have numerous application possibilities that they can also offer to the industry. ITER enables among others the possibility to build the machine, planning of the conventional power plants as well as development of maintenance. The goal is to implement top research results of the energy project through ROViR for the use of companies to enhance competitiveness and productivity.

”The development of fusion reactor creates new expertise in Finland that accelerates the productivity and competitiveness of Finnish industries. This is also one way of ensuring that top research and R&D that benefits the industry will stay in Finland in future as well,’’ says VTT President and CEO Erkki KM Leppävuori.

Fusion for Energy (F4E) is the European Union’s organisation responsible for providing Europe’s contribution to ITER. F4E also supports fusion R&D initiatives through the Broader Approach Agreement, a pact on fusion energy partnership which lasts for 10 years and represents about € 340m of European investment signed with Japan. Ultimately F4E will contribute towards the construction of demonstration fusion reactors. F4E was created on 27 March 2007 for a period of 35 years and will manage a budget of around 4 billion Euros for the first ten years. Its seat is in Barcelona.

Didier Gambier, Director of Fusion for Energy, says that the DTP2 is a concrete example of successful cooperation between Fusion for Energy, European laboratories and industrial partners. “This facility is ideal for training and knowledge transmission because it brings together a combination of technologies relevant to the ITER experiment. The know how we have acquired will stimulate spin offs in different innovation areas“.

The building expenses of the Global ITER fusion reactor project have been estimated to be higher than as € 5 billion over the next ten years. Europe has a significant role in the ITER project and EU will cover 45% of the building costs of the test plant. The construction work of the 500 MW test plant is already under progress in Cadarches South of France.


Additional information:

VTT Technical Research Centre of Finland
Principal Project Leader of Divertor Test Platform Facility, DTP2
Senior Research Scientist Mikko Siuko
tel. +358 40 8490 243
mikko.siuko@vtt.fi

Seppo Karttunen
Chief Research Scientist (Fusion energy)
Tel. +358 20 822 5069
seppo.karttunen@vtt.fi

Further information on VTT:

Senior Vice President
Olli Ernvall
Tel. +358 20 722 6747
olli.ernvall@vtt.fi
VTT Technical Research Centre of Finland is the biggest contract research organization in Northern Europe. VTT provides high-end technology solutions and innovation services. From its wide knowledge base, VTT can combine different technologies, create new innovations and a substantial range of world-class technologies and applied research services, thus improving its clients' competitiveness and competence. Through its international scientific and technology network, VTT can produce information, upgrade technology knowledge and create business intelligence and value added to its stakeholders.

Olli Ernvall | VTT
Further information:
http://www.vtt.fi/uutta/2009/090129.jsp?lang=en
http://www.vtt.fi/?lang=en

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>