Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Finnish technology research facing the most challenging fusion energy project

29.01.2009
Remote maintenance systems for ITER to be developed in Finland

Fusion is a promising option for a large scale energy production for the second half of this century and beyond. Fusion has practically unlimited fuel resources, and it is safe and environmentally sound.

The global ITER-test power plant project can be seen as one of the most challenging energy projects of mankind and Europe has a significant role in it. VTT Technical Research Centre of Finland and Tampere University of Technology (TUT) are responsible for developing the maintenance of the critical parts of the fusion plant that is been built in Europe (France). A full-scale research platform to develop and test the maintenance robot and remote handling operations for ITER will be taken into use on January 29 in Finland.

ITER-test power plant project is a significant step toward the development of fusion energy. The development project stretching over decades aims to prove the scientific and technological feasibility of fusion. If successful, the project proves fusion to be a true alternative energy source of the future. In addition to EU and Switzerland, India, Japan, China, South-Korea, Russia, and United States are also ITER Parties. Each Party has its own significant fusion programme but the international ITER is the most important and first priority project and proves that global collaboration can be done. European contributions to ITER are managed and contracted by the new Joint Undertaking “Fusion for Energy” established in Barcelona.

The EU owned and VTT hosted ITER remote handling system’s research and development environment, is an important milestone and appreciation for Finnish expertise. The development of the he remote handling system is one of the most significant development projects within the Tekes funded fusion areas, where virtual simulation and modelling know-how are forwarded for the utilization of the industry. As a result of hard international competition the DTP2 research environment was chosen to be part of VTT and Tampere University of Technology international Remote Operation and Virtual Reality Centre ROViR. The DTP2 facility and projects related are funded mainly by Fusion for Energy and Tekes.

Remote operation and virtual reality have a core role in the maintenance of ITER reactor as they have numerous application possibilities that they can also offer to the industry. ITER enables among others the possibility to build the machine, planning of the conventional power plants as well as development of maintenance. The goal is to implement top research results of the energy project through ROViR for the use of companies to enhance competitiveness and productivity.

”The development of fusion reactor creates new expertise in Finland that accelerates the productivity and competitiveness of Finnish industries. This is also one way of ensuring that top research and R&D that benefits the industry will stay in Finland in future as well,’’ says VTT President and CEO Erkki KM Leppävuori.

Fusion for Energy (F4E) is the European Union’s organisation responsible for providing Europe’s contribution to ITER. F4E also supports fusion R&D initiatives through the Broader Approach Agreement, a pact on fusion energy partnership which lasts for 10 years and represents about € 340m of European investment signed with Japan. Ultimately F4E will contribute towards the construction of demonstration fusion reactors. F4E was created on 27 March 2007 for a period of 35 years and will manage a budget of around 4 billion Euros for the first ten years. Its seat is in Barcelona.

Didier Gambier, Director of Fusion for Energy, says that the DTP2 is a concrete example of successful cooperation between Fusion for Energy, European laboratories and industrial partners. “This facility is ideal for training and knowledge transmission because it brings together a combination of technologies relevant to the ITER experiment. The know how we have acquired will stimulate spin offs in different innovation areas“.

The building expenses of the Global ITER fusion reactor project have been estimated to be higher than as € 5 billion over the next ten years. Europe has a significant role in the ITER project and EU will cover 45% of the building costs of the test plant. The construction work of the 500 MW test plant is already under progress in Cadarches South of France.


Additional information:

VTT Technical Research Centre of Finland
Principal Project Leader of Divertor Test Platform Facility, DTP2
Senior Research Scientist Mikko Siuko
tel. +358 40 8490 243
mikko.siuko@vtt.fi

Seppo Karttunen
Chief Research Scientist (Fusion energy)
Tel. +358 20 822 5069
seppo.karttunen@vtt.fi

Further information on VTT:

Senior Vice President
Olli Ernvall
Tel. +358 20 722 6747
olli.ernvall@vtt.fi
VTT Technical Research Centre of Finland is the biggest contract research organization in Northern Europe. VTT provides high-end technology solutions and innovation services. From its wide knowledge base, VTT can combine different technologies, create new innovations and a substantial range of world-class technologies and applied research services, thus improving its clients' competitiveness and competence. Through its international scientific and technology network, VTT can produce information, upgrade technology knowledge and create business intelligence and value added to its stakeholders.

Olli Ernvall | VTT
Further information:
http://www.vtt.fi/uutta/2009/090129.jsp?lang=en
http://www.vtt.fi/?lang=en

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>