Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Finnish technology research facing the most challenging fusion energy project

29.01.2009
Remote maintenance systems for ITER to be developed in Finland

Fusion is a promising option for a large scale energy production for the second half of this century and beyond. Fusion has practically unlimited fuel resources, and it is safe and environmentally sound.

The global ITER-test power plant project can be seen as one of the most challenging energy projects of mankind and Europe has a significant role in it. VTT Technical Research Centre of Finland and Tampere University of Technology (TUT) are responsible for developing the maintenance of the critical parts of the fusion plant that is been built in Europe (France). A full-scale research platform to develop and test the maintenance robot and remote handling operations for ITER will be taken into use on January 29 in Finland.

ITER-test power plant project is a significant step toward the development of fusion energy. The development project stretching over decades aims to prove the scientific and technological feasibility of fusion. If successful, the project proves fusion to be a true alternative energy source of the future. In addition to EU and Switzerland, India, Japan, China, South-Korea, Russia, and United States are also ITER Parties. Each Party has its own significant fusion programme but the international ITER is the most important and first priority project and proves that global collaboration can be done. European contributions to ITER are managed and contracted by the new Joint Undertaking “Fusion for Energy” established in Barcelona.

The EU owned and VTT hosted ITER remote handling system’s research and development environment, is an important milestone and appreciation for Finnish expertise. The development of the he remote handling system is one of the most significant development projects within the Tekes funded fusion areas, where virtual simulation and modelling know-how are forwarded for the utilization of the industry. As a result of hard international competition the DTP2 research environment was chosen to be part of VTT and Tampere University of Technology international Remote Operation and Virtual Reality Centre ROViR. The DTP2 facility and projects related are funded mainly by Fusion for Energy and Tekes.

Remote operation and virtual reality have a core role in the maintenance of ITER reactor as they have numerous application possibilities that they can also offer to the industry. ITER enables among others the possibility to build the machine, planning of the conventional power plants as well as development of maintenance. The goal is to implement top research results of the energy project through ROViR for the use of companies to enhance competitiveness and productivity.

”The development of fusion reactor creates new expertise in Finland that accelerates the productivity and competitiveness of Finnish industries. This is also one way of ensuring that top research and R&D that benefits the industry will stay in Finland in future as well,’’ says VTT President and CEO Erkki KM Leppävuori.

Fusion for Energy (F4E) is the European Union’s organisation responsible for providing Europe’s contribution to ITER. F4E also supports fusion R&D initiatives through the Broader Approach Agreement, a pact on fusion energy partnership which lasts for 10 years and represents about € 340m of European investment signed with Japan. Ultimately F4E will contribute towards the construction of demonstration fusion reactors. F4E was created on 27 March 2007 for a period of 35 years and will manage a budget of around 4 billion Euros for the first ten years. Its seat is in Barcelona.

Didier Gambier, Director of Fusion for Energy, says that the DTP2 is a concrete example of successful cooperation between Fusion for Energy, European laboratories and industrial partners. “This facility is ideal for training and knowledge transmission because it brings together a combination of technologies relevant to the ITER experiment. The know how we have acquired will stimulate spin offs in different innovation areas“.

The building expenses of the Global ITER fusion reactor project have been estimated to be higher than as € 5 billion over the next ten years. Europe has a significant role in the ITER project and EU will cover 45% of the building costs of the test plant. The construction work of the 500 MW test plant is already under progress in Cadarches South of France.


Additional information:

VTT Technical Research Centre of Finland
Principal Project Leader of Divertor Test Platform Facility, DTP2
Senior Research Scientist Mikko Siuko
tel. +358 40 8490 243
mikko.siuko@vtt.fi

Seppo Karttunen
Chief Research Scientist (Fusion energy)
Tel. +358 20 822 5069
seppo.karttunen@vtt.fi

Further information on VTT:

Senior Vice President
Olli Ernvall
Tel. +358 20 722 6747
olli.ernvall@vtt.fi
VTT Technical Research Centre of Finland is the biggest contract research organization in Northern Europe. VTT provides high-end technology solutions and innovation services. From its wide knowledge base, VTT can combine different technologies, create new innovations and a substantial range of world-class technologies and applied research services, thus improving its clients' competitiveness and competence. Through its international scientific and technology network, VTT can produce information, upgrade technology knowledge and create business intelligence and value added to its stakeholders.

Olli Ernvall | VTT
Further information:
http://www.vtt.fi/uutta/2009/090129.jsp?lang=en
http://www.vtt.fi/?lang=en

More articles from Power and Electrical Engineering:

nachricht Touch Displays WAY-AX and WAY-DX by WayCon
27.06.2017 | WayCon Positionsmesstechnik GmbH

nachricht Air pollution casts shadow over solar energy production
27.06.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

For a chimpanzee, one good turn deserves another

27.06.2017 | Life Sciences

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>