Smallest Ever Quantum Dots Bring Real World Applications Closer

Quantum dots have extraordinary electronic properties, like the ability to bottle-up normally slippery and speedy electrons. This allows controlled interactions among electrons to be put to use to do computations. Until now, quantum dots have been useable only at impractically low temperatures, but the new atom-sized quantum dots perform at room temperature.

Often referred to as artificial atoms, quantum dots have previously ranged in size from 2-10 nanometers in diameter. While typically composed of several thousand atoms, all the atoms pool their electrons to “sing with one voice”, that is, the electrons are shared and coordinated as if there is only one atomic nucleus at the centre. That property enables numerous revolutionary schemes for electronic devices.

Research project leader Robert A. Wolkow described the potential impact saying, “Because they operate at room temperature and exist on the familiar silicon crystals used in today’s computers, we expect these single atom quantum dots will transform theoretical plans into real devices.”

The single atom quantum dots have also demonstrated another advantage – significant control over individual electrons by using very little energy. Wolkow sees this low energy control as the key to quantum dot application in entirely new forms of silicon-based electronic devices, such as ultra low power computers. “The capacity to compose these quantum dots on silicon, the most established electronic material, and to achieve control over electron placement among dots at room temperature puts new kinds of extremely low energy computation devices within reach.”

The single atom quantum dots and their ability to control electrons is the focus of a paper titled “Controlled Coupling and Occupation of Silicon Atomic Quantum Dots at Room Temperature” posted January 27, 2009, in the on-line edition and published in the January 30, 2009, edition of Physical Review Letters.

Paper Details
Title: Controlled Coupling and Occupation of Silicon Atomic Quantum Dots
at Room Temperature
Authors: M. Baseer Haider, Jason L Pitters, Gino A. DiLabio, Lucian Livadaru, Josh Y Mutus and Robert A. Wolkow

Publication: Physical Review Letters 102, 046805, 2009

Media Contact

Shannon Jones Newswise Science News

More Information:

http://www.nrc.gc.ca

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Better magnets for green energy

Researchers use multicomponent alloys to make strong and ductile soft magnetic materials. Latest results now published in the journal Nature. Soft magnetic materials (SMMs) applied in electric engines transform energy…

Sound plus electrical body stimulation has potential to treat chronic pain

New technique could relieve pain for individuals with various chronic and neurological conditions. A University of Minnesota Twin Cities-led team has found that electrical stimulation of the body combined with…

Bioengineered cornea can restore sight to the blind and visually impaired

Bioengineered corneal tissue for minimally invasive vision restoration in advanced keratoconus in two clinical cohorts. Researchers and entrepreneurs have developed an implant made of collagen protein from pig’s skin, which…

Partners & Sponsors