Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution Inspires More Efficient Solar Cell Design

28.01.2013
Geometric pattern maximizes time light is trapped in solar cell
The sun’s energy is virtually limitless, but harnessing its electricity with today’s single-crystal silicon solar cells is extremely expensive — 10 times pricier than coal, according to some estimates. Organic solar cells — polymer solar cells that use organic materials to absorb light and convert it into electricity — could be a solution, but current designs suffer because polymers have less-than-optimal electrical properties.

Researchers at Northwestern University have now developed a new design for organic solar cells that could lead to more efficient, less expensive solar power. Instead of attempting to increase efficiency by altering the thickness of the solar cell’s polymer layer — a tactic that has preciously garnered mixed results — the researchers sought to design the geometric pattern of the scattering layer to maximize the amount of time light remained trapped within the cell.

Using a mathematical search algorithm based on natural evolution, the researchers pinpointed a specific geometrical pattern that is optimal for capturing and holding light in thin-cell organic solar cells.

The resulting design exhibited a three-fold increase over the Yablonovitch Limit, a thermodynamic limit developed in the 1980s that statistically describes how long a photon can be trapped in a semiconductor.

A paper about the results, “Highly Efficient Light-Trapping Structure Design Inspired by Natural Evolution,” was published January 3 in Scientific Reports, a publication of Nature.

In the newly designed organic solar cell, light first enters a 100-nanometer-thick “scattering layer,” a geometrically-patterned dielectric layer designed to maximize the amount of light transmitted into the cell. The light is then transmitted to the active layer, where it is converted into electricity.
“We wanted to determine the geometry for the scattering layer that would give us optimal performance,” said Cheng Sun, assistant professor of mechanical engineering in Northwestern’s McCormick School of Engineering and Applied Science and co-author of the paper. “But with so many possibilities, it’s difficult to know where to start, so we looked to laws of natural selection to guide us.”

The researchers employed a genetic algorithm, a search process that mimics the process of natural evolution, explained Wei Chen, Wilson-Cook Professor in Engineering Design and professor of mechanical engineering at McCormick and co-investigator of the research.

“Due to the highly nonlinear and irregular behavior of the system, you must use an intelligent approach to find the optimal solution,” Chen said. “Our approach is based on the biologically evolutionary process of survival of the fittest.”

The researchers began with dozens of random design elements, then “mated” and analyzed their offspring to determine their particular light-trapping performance. This process was carried out over more than 20 generations and also accounted for evolutionary principles of crossover and genetic mutation.

The resulting pattern will be fabricated with partners at Argonne National Laboratory.

Also co-authoring the paper were co-lead authors Chen Wang and Shuangcheng Yu, graduate students in McCormick’s Department of Mechanical Engineering.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Power and Electrical Engineering:

nachricht Hybrid storage with market potential: Battery production goes Industrie 4.0
01.03.2017 | Fraunhofer Institute for Applied Polymer Research IPA

nachricht WSU research advances energy savings for oil, gas industries
28.02.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>