Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers create vibrant colors in vertical silicon nanowires

04.04.2011
Surprising phenomenon may lead to greater sensitivity in image sensor devices

Engineers may soon be singing, "I'm going to wash that gray right out of my nanowires," thanks to a colorful discovery by a team of researchers from Harvard University and Zena Technologies. In contrast to the somber gray hue of silicon wafers, Kenneth B. Crozier and colleagues demonstrated that individual, vertical silicon nanowires can shine in all colors of the spectrum.

The vibrant display, dependent on the diameter of the individual wires, is even visible to the naked eye. In addition to adding a splash of color to the lab, the finding has potential for use in nanoscale image sensor devices, offering increased efficiency and the ability to detect color without the use of filters.

"It is surprising," says Crozier, John L. Loeb Associate Professor of the Natural Sciences at the Harvard School of Engineering and Applied Science (SEAS). "A lot of people are making nanowires, and you really don't think of the color so much. In this vertical configuration you can get very strong color effects, and you can tune them over a range of wavelengths of the visible region. The strong effects can be seen right down to the level of the individual wire."

The finding, published in the March 17, 2011, online edition of Nano Letters, may be the first experimental report that silicon nanowires can take on a variety of colors depending on their diameter and under bright-field illumination. Previous work has shown that nanowires can take on different colors but only by looking at scattered, rather than directly reflected, light.

To create the multicolored array of vertical silicon nanowires, the engineers at Harvard and Zena Technologies used a combination of electron beam lithography and inductively coupled plasma reactive ion etching.

A smooth wafer of silicon was plasma etched until all that remained were the vertically protruding nanowires, resembling bristles on a toothbrush. While the nanowires were created in arrays of thousands for convenience, the colors they exhibited were due to the properties of the individual wires, not by the way light was scattered or diffracted in the group.

"Each nanowire acts as a waveguide, like a nano-sized optical fiber—but an optically absorbing one," explains Crozier. "At short wavelengths there is not much optical coupling to the nanowire. At long wavelengths, the coupling is better, but the properties of the waveguide are such that there is not much absorption. In between, there is a range of wavelengths where the light is coupled to the nanowire and absorbed. This range is determined by the nanowire diameter. We made nanowires with diameters of 90, 100, and 130 nm that appeared red, blue and green, respectively."

To demonstrate the remarkable phenomenon and the relative ease of controlling and positioning the colorful nanowires, the researchers created a nanoscale-sized tribute to Harvard, designing a pattern resembling the engineering school's Veritas seal and spelling out the acronym SEAS in a rainbow of colors.

While the Harvard image closely matched the school's seal, the desired color eluded the engineers.

"We actually wanted to make the seal red rather than blue, but it turned out that the diameter was a little bit wrong," says Crozier.

As even small changes in the radius of a wire can alter the color, the seal turned out to be blue, more suitable for the famous seal of a certain other Ivy League institution.

Fortunately, the technology has other promising applications. The researchers' eventual aim is to use the wires in image sensors. Traditional photodetectors in image sensor devices can gauge the intensity of light but not determine its color without the use of an additional filter, which throws away much of the light, limiting the device's sensitivity.

The researchers hope to address this by fabricating vertical nanowires containing photodetectors above standard photodetectors formed on a silicon wafer. The nanowire and standard photodetectors could each detect a different part of the spectrum of the incident light. By comparing the signals from each, the color could be determined without losing so much of the light.

"With image sensors, every little bit of efficiency counts. Moreover, we even imagine using the colored wires to encode data in a read-only type of information storage," adds Crozier.

The researchers have filed a provisional patent for their work.

Crozier's co-authors included Kwanyong Seo, Paul Steinvurzel, Ethan Schonbrun, Yaping Dan, and Tal Ellenbogen, all from SEAS, and Munib Wober, from Zena Technologies. The study was supported by funding from Zena Technologies and the United States Department of Energy, Office of Science and Basic Energy Sciences. In addition, the research team acknowledges the Center for Nanoscale Systems at Harvard for fabrication work.

Michael Patrick Rutter | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Power and Electrical Engineering:

nachricht Ultrathin device harvests electricity from human motion
24.07.2017 | Vanderbilt University

nachricht Stanford researchers develop a new type of soft, growing robot
21.07.2017 | Stanford University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>