Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering Students Turn Vintage MGB Into Electric Car

14.09.2009
The year was 1984. Roger Dougal, a newly minted Ph.D. in electrical engineering, was beginning his career in the University of South Carolina’s College of Engineering.

He was the new owner of a 1972 MGB – a red convertible, perfect for life in the Palmetto State, where he could zip along the highways and city streets with the car’s top down practically year-round. Lightweight with easy handling, the MGB was a snazzy roadster for a young professor on the go.

But that was, shall we say, soooo last century.

Fast forward about two dozen years. Now internationally recognized for his research on power sources and systems, Dougal still loves cars and has added a passion for sailboats. The MGB was collecting dust – and a few leaves – in his garage. But the professor’s ongoing curiosity about all things auto and electrical meant one thing: He had to find out if he could build an electric car.

“I’ve always played with cars as a hobby,” said Dougal , who has a touch of gray in his hair as the years have rolled on. “I bought the car to rebuild it, but just ran out of time. I decided to do something useful.”

He took the car out of retirement and turned it over to electrical engineering students at the University of South Carolina’s College of Engineering and Computing. He gave them the opportunity to turn the British Leyland Motor Corp. vehicle into a car of the 21st century – a car not run on “petrol,” but electricity.

And they have. The “Electric MG,” as it’s called, is a reality.

“It can go really fast for short distances,” said Dougal, who estimates that about $10,000 has been spent in making the changes.

About 15 students have worked on the car since Dougal began the great experiment, which has left some MGB fans aghast. But the professor was determined to create an electric vehicle in the machine shop of the College of Engineering and Computing.

“I said, ‘We can do this before GM can,’ ” said Dougal, who estimates that he and several groups of students have worked on the project for about 18 months. “It didn’t move along quite as fast as I’d planned. When you think about how many people are working at the major auto manufacturers, we’ve probably made pretty good progress.”

But much of the student ingenuity and labor was volunteered. Some students have received course credit for their work. A few have received payment.

Tyler Price, a senior from Lexington, S.C., is one of the students working on the car, which has had the convertible top removed and a roll bar added.

The original engine is in Dougal’s garage and has been replaced by an AC motor with a custom driveshaft. In its place is a bank of more than 100 supercapacitors, resembling soft drink cans that have been encased in a plastic box and loaded into the trunk for the power source. A lithium battery will be added later and coupled with the supercapacitor bank to improve range and efficiency.

“The changes take the car from one century to another,” said Price. “Like all projects, it’s been an evolution.”

The experience has shown Price that electric vehicles can be a reality.

“I believe we’re doing something that will be used. We’re ahead of the curve. Only a few universities are doing what we’ve done,” he said.

The car is waiting on some modifications, including a paint job, LED lamps to replace the headlights, a sports windshield and new carpet. Because it’s electric, the car sounds much like a golf cart. The students want to add acoustics to give the MGB-EV, as they call it, a sound more closely resembling a car.

Nevertheless, the car can be driven – just not on a highway yet, Price said.

Dougal and the student team, which includes undergraduate Robbie Motte of Bonneau and graduate student Steven Kowski of St. Petersburg, Fla., are looking forward to testing it for speed, acceleration and economy.

“This was a famous British sports car back in its day,” said Price, who wasn’t born when Dougal acquired the car. “Now, it will have some fame in another century.”

Karen Petit | Newswise Science News
Further information:
http://www.sc.edu/

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>